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Abstract— Approaches to social planning tend to assume that
the behavior of agents is at an equilibrium, yet in practice
people’s behavior gradually adapts to their experiences. In
this work, a model of social planning under the replicator
dynamics is studied. This model allows for a social planner
to control the learning process of agents by influencing the
relative fitness of different strategies. The desiderata that such a
social planner would ideally achieve – exponential stability and
budget-balance – are described. Existence of a solution for any
full-support distribution, as well as an analysis of its properties,
are shown constructively by leveraging classical tools from
geometric control theory. Though the solution is optimal in an
environment without transfer costs, this may not generally hold
otherwise. We formulate a relevant optimal control problem
to model this setting, and determine performance guarantees
based in our original solution.

I. INTRODUCTION

When agents’ behavior evolves according to a learning
process, how can social planners implement desirable out-
comes? The replicator dynamics provides a model based in
natural selection of how populations co-evolve due to their
relative fitness. This model has been used by researchers to
study congestion games in traffic and network applications,
where a continuum of agents is treated as flows through
a network, interactions between biological species, search
with positive externalities, and more [1]. In particular, agents
adapt their behavior by myopically imitating observed out-
comes better than their own with probability proportional
to the degree to which such an outcome was superior. For
example, consider a setting in which agents in a traffic
network aim to get to their destination quickly. Agents with
the same destination may choose to take different paths to
get there. Upon arrival, they can observe the paths taken by
others and their duration. When deciding which path they
take the next day, an agent chooses to take faster paths
observed the previous day with higher probability.

In this work, we study a complete information two-player
symmetric game where agents update their strategies via
the replicator dynamics, and designers provide monetary
transfers as incentives to reach an optimal distribution of
strategies. We assume agents have quasi-linear utilities,
which dictate how a planner interacts with the agents. We
first formulate this model as a control system based in
the replicator dynamics, and study solutions to this system
whereby a planner can condition the transfers at a specific
time on the distribution of strategies taken only at that time.
Our goal is to identify a mechanism by which the planner
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may implement a given distribution of strategies as the
limit point of this control system. This is while maintaining
the properties of exponential stability and budget-balance.
Though we assume a two player game structure, our results
generalize straightforwardly to population games.

Our main theorem is that when aiming to stabilize to
any distribution of strategies with full support1, there al-
ways exists an exponentially stabilizing and budget-balanced
feedback controller. That is, there is a mechanism that
induces a controller which satisfies these desirable properties.
We further derive standard bounds on the time-to-reach,
robustness and optimality of this mechanism.

A. Related Work

In evolutionary game theory, the main area of relevant
study is evolutionary implementation. This literature primar-
ily studies implementing efficient outcomes with incomplete
information, such as through Pigouvian pricing [2]. Such
literature has studied logit dynamics [2], aggregative games
[3], [4], and more. Though we focus on the deterministic
replicator dynamics with quasi-linear utility under complete
information, rather than showing implementation of only
Pareto efficient outcomes under certain classes of relevant
games, we show nearly all outcomes can be implemented
in arbitrary games. Furthermore, we provide rates of expo-
nential convergence that can be chosen by the designer, and
don’t make assumptions about properties of an agent’s non-
monetary utility.

Similar to us, other works have leveraged traditional
control-theoretic tools. For example, adaptive gain con-
trollers can be used to incentivize cooperative behaviour
in 2x2 games [5] under the replicator dynamics. Further
work has generally explored equilibrium selection in such
games [6], specifically those dominant strategy and anti-
coordination structures. We differ in focusing on general
games and target distributions beyond equilibria, however
we assume complete information about the payoffs whereas
these other approaches require less information due to their
limitation to certain games. Geometric techniques, which
are key to feedback linearization, have also been applied
to the replicator dynamics [7]. However they focus on a
different control structure that affects the magnitude of the
fitness equations. Leveraging feedback control to influence
population dynamics can be viewed as enriching the causal
map from the social state to payoffs as in a payoff dynamic
model (PDM) [8]. We do not however consider richer envi-
ronments with delays for example, that is possible to model

1All strategies are played with positive probability.



with PDMs.
A line of literature at the intersection of computer science

and game theory that is similar to our work is called adap-
tive incentive design [9]. This work studies how planners
can dynamically design incentives to guide their decision-
making when agents employ some unknown learning process
inspired by machine learning approaches. We differ in that
we employ additional constraints such as budget-balance
under different dynamics. Further work in this direction
studies a very similar setting to our work [10], [11], where
they leverage two-timescale dynamics and the convergence
of best-response dynamics in potential games to achieve
similar results. Again, our work differs in that we consider
different dynamics, arbitrary games, and budget-balanced
controllers. Along with [10], [12], we apply our solution
to traffic tolling. However, these works leverage logit and
best-response dynamics in their analysis.

II. MODEL

Let S be a finite set of strategies that can be played
by each agent in a two-agent symmetric game. We de-
note ∆(S) as the set of probability distributions on S,
where p ∈ ∆(S) is such that p(s) is the probability of
s ∈ S. Distributions over strategies with full support are
elements of the relative interior, denoted relint(∆(S)), i.e.
relint(∆(S)) = {p ∈ ∆(S) : p(s) > 0 ∀s ∈ S}.
Denote the size of the set by |S| =

∑
s∈S 1. Let u(s, s′)

be the utility achieved by s ∈ S when playing against
s′ ∈ S . Define θt ∈ ∆(S) as the distribution of agents
that play a strategy at time t ≥ 0. For example, θt(s) = 1
implies that all agents are playing s at time t. Note that ∀t,
θt(s) ≥ 0 ∀s and

∑
s∈S θt(s) = 1. At any given time t,

define ut(s) = Es′∼θt [u(s, s
′)]. This is the expected utility

of playing strategy s against a population distribution θt,
where we suppress reference to θt when it is clear. We define
ūt = Es∼θt [ut(s)] as the average utility across strategies at
distribution θt. These allow us to define the continuous-time
evolution of a population distribution θt(s) by the replicator
dynamics with respect to some initial distribution θ̂0 ∈
∆(S): ˙̂

θt(s) = θ̂t(s) [ut(s)− ūt], where ˙̂
θt(s) is interpreted

as the time derivative of θ̂t(s). We say that θ is a (symmetric)
Nash equilibrium if it is a fixed point of the best-response
map. That is, θ ∈ argmaxθ̂∈∆(S) Es∼θ̂,s′∼θ [u(s, s

′)]. The
relationship between Nash equilibria and limit points of the
replicator dynamics is well-known, and more details can be
found in [13].

To extend the replicator dynamics to the setting where a
designer can affect utilities, we introduce a pricing strategy,
or controller, k : ∆(S) × S → R where k(θ, s) for s ∈ S
is the transfers given to agents that play strategy s when the
distribution of strategies in the population is θ. Let K be
the set of controllers. We assume preferences over outcomes
in the game and transfers given by k ∈ K are determined
by û: û(s, s′, θ) = u(s, s′) + k(θ, s). Inherent in this is that
agents have quasilinear preferences, with transfers entering
linearly. This is a standard assumed form of an agent’s utility
function. Due to the following, û(s) = u(s) + k(θ, s), we

can redefine our evolutionary dynamics as

θ̇t(s) = θt(s)
[
u(s) + k(θt, s)− ¯̂ut

]
= fs(θt) + gs(θt)kt(s)− ¯̂ut

where kt(s) = k(θt, s) for simplicity and ¯̂ut = ū +∑
s∈S θt(s)kt(s). Note that by this structure, the dynamics

of population s, θ̇t(s), is directly affected by the controller
for other strategies, ie. {kt(s′)}s′ ̸=s. This is intuitively
reasonable: our control model provides an extrinsic utility
to different strategy populations, hence the relative fitness
of each strategy may differ depending on the perturbed
utility of other strategies. As such, the control system is
nearly of a typical form: for each s ∈ S. the first portion
fx(θt)+gs(θt)kt(s) is in control affine form, but the second
part ū′

t = ū+
∑

s′∈S θt(s
′)kt(s

′) is not.

A. Anonymity

Our model is one of population dynamics and thus we have
no further information on individual agents. A benefit of this
is that a mechanism cannot discriminate based on identity,
rather only on the actions taken. This is favorable from a
privacy perspective, since the planner does not require both
identity and action information. We could have considered a
model with identity, and thus we can consider a mechanism
that conditions based on identity and action. This makes
the problem trivial: we can merely sort agents into groups
and punish them with large negative transfers if they do
not take a prescribed action, which we choose such that it
induces the targeted distribution of behaviour. In equilibrium,
no transfers are made and thus it is a budget-balanced
mechanism. We forgo the possibility of this by only being
able to affect to give transfers to agents by observing the
action they take, irrespective of their identity. As such, we
would not be able to directly punish them for not taking a
prescribed action as we cannot observe their identity.

III. DESIDERATA FOR MECHANISMS

In this work, we are interested in mechanisms that output
a controller that implements some distribution over actions.
Formally, a mechanism is a function M : A → K where A ⊆
∆(S). We aim to identify the largest possible domain for a
mechanism while still respecting certain desiderata. Before
describing the desired qualities of a mechanism, we define a
property of a target distribution p ∈ ∆(S):

Definition 1: p ∈ ∆(S) is asymptotically imple-
mentable if there exists a controller k that asymptotically
stabilizes to p.
Here asymptotic stability is defined as follows:

Definition 2: A controller kt(·) asymptotically stabilizes
to p if limt→∞ θt(s) = p(s) ∀s ∈ S, where θt is induced by
kt from any θ0 ∈ relint(∆(S)), and Lyapunov stable around
θ0.
Similarly we say p is ϵ-asymptotically implementable if
there is p′ ∈ Bϵ(p) that is asymptotically implementable.



A. Stabilization

In the usual flavour of control design, we desire a con-
troller that stabilizes to a given population distribution p ∈ A.
We define a desirable form of stability via the following:

Definition 3: Fix λ > 0. A controller kt is λ-
exponentially stabilizing to p if ∃m > 0 such that for all
θ0 ∈ relint(∆(S)) ∀t ≥ 0, ∥θt − p∥ ≤ m∥θ0 − p∥e−λt. We
say that M is λ-exponentially stabilizing if for any p ∈ A,
M(p) = kt is λ-exponentially stabilizing to o.

B. Budget-Balance

The second desired solution quality is that of budget-
balance:

Definition 4: For a given population θ(s), k is a budget-
balanced controller with respect to θ if

∑
s∈S θ(s)k(θ, s) =

0. We say that M is a budget-balanced mechanism if for
all p ∈ A and θt induced by M(p) = k from any θ0 ∈
relint(∆(S)), then k is a budget-balanced controller with
respect to θt for all t ≥ 0.
Intuitively, this condition specifies that the net transfers to
all agents is zero. If instead it were positive, then it means
that the social planner loses revenue, and if negative then
it means that the social planner gains revenue. We find the
latter non-ideal in our model as we consider a planner that
cares only about agents’ welfare and not their own revenue.
Furthermore, we require this hold at every time t ≥ 0. This
is a stricter criteria that it integrating to zero over all time,
as we do not want the planner to ever be in a deficit or
surplus as the latter harms agents in the short run, and the
former means the planner must take loans, which is not ideal.
Nevertheless, we are able to find a desirable solution even
with this strong requirement.

We define budget-balanced transfers as those that are
weighted net-zero as opposed to the usual condition of
unweighted net-zero. Specifically, it is weighted by the popu-
lation distribution. When considering this as some percentage
of a finite population, then this weighted sum is equivalent
to transfer between agents when transfers must be the same
within a strategy population:

Proposition 1: Let Is be a non-empty, finite collection
of agents with strategy s ∈ S , and let T i

s be the transfers
associated with player i ∈ Is. If transfers are identical across
strategy populations, denoted Ts, then the set of transfer
{T i

s : i ∈ Is, s ∈ S} is budget balanced if and only if
{Ts : s ∈ S} is weighted budget balanced.

Proof: Let θ(s) = |Is|∑
s′∈S |Is′ |

. Observe the fol-
lowing:

∑
i∈Is

T i
s = |Is|Ts = θ(s)

[∑
s′∈S |Is′ |

]
Ts.

Then the budget-balancing condition is as follows:
0 =

∑
s∈S

∑
i∈Is

T i
s =

∑
s∈S θ(s)Ts

[∑
s′∈S |Is′ |

]
=∑

s∈S θ(s)Ts. Thus transfers are budget balancing if and
only if {Ts}s∈S is weighted budget-balancing.

One can observe that the criteria of budget-balance can
always be satisfied without affecting the replicator dynamics.
We can do so by redistributing any profits or losses gained
by the social planner equally across all agents, which does
not change the dynamics. As such, any stability properties of

the system are maintained under such a redistribution since
the dynamics only depend on the relative payoffs and are
thus unchanged. However when transfers are costly, such a
redistribution could be costly. We study this in Section V.

IV. IMPLEMENTABILITY

In this section, we are concerned with what distributions
are implementable:

Definition 5: A ⊆ S is λ-implementable if there exists
a mechanism M with domain A such that p ∈ A and M is
λ-exponentially stabilizing and budget-balanced.
Further we say that the time guarantee for a mechanism M
with respect to ϵ and p is a (t, ϵ) such that for all t′ > t,
θt′ ∈ Bϵ(p) for θt induced by M(p). Intuitively, a (t, ϵ) time
guarantee means that we can find a controller that allows the
the distribution of strategies to reach within ϵ of our target
p in t units of time.

We also provide a notion of approximate implementability:
Definition 6: A ⊆ S is (λ, ϵ)-implementable if there

exists B ⊆ S λ-implementable such that for all p ∈ A,
there exists p′ ∈ B ∩ Bϵ(p). A ⊆ S is λ-approximately
implementable if it is (λ, ϵ)-implementable for all ϵ > 0.

We are interested in finding a maximal set A that is im-
plementable for a given λ. Our main result is the following:

Theorem 1: Fix λ > 0. Then A = relint(∆(S)) is λ-
implementable. Furthermore, there exists an implementing
mechanism M such that for p ∈ A and all ϵ > 0 sufficiently
small, there exists a t̄ϵ(λ) = O( 1λ (1 − ln(ϵ))) such that
(t̄ϵ(λ), p) is a time guarantee for M with respect to ϵ and p.

All proofs can be found in the Appendix. We construct our
controller to be one similar to feedback linearization, that is
kt(s) = vt(s)−fs(θt)

gs(θt)
. Hence we can say that the maximal

domain for a mechanism M must contain relint(∆(S)), as
well as any pure strict Nash equilibria, and for approximate
implementability the maximal domain is exactly ∆(S).

The construction of our mechanism relies on knowledge
of the underlying utility function, hence any misspecification
can cause asymptotic or exponential stability to no longer
hold. However due to the design of our controller, when we
know that preferences are quasilinear and we have bounded
error in our specification of the utility function u, we
nevertheless achieve approximate and exponential stability
results by leveraging the robustness of exponential stability
to bounded and proportional additive uncertainty2:

Theorem 2: Let û be a misspecified model for the utility
function, such that the true unknown utility function u is
within ϵ > 0 of û, i.e. ∥u− û∥∞ ≤ ϵ.

1) For all ϵ′ > ϵ
λ and λ > 0, p is ϵ′-asymptotically

implementable.
2) For all λ > ϵ, if p ∈ relint(∆(S)) then p is (λ − ϵ)-

implementable.
Proof: Let δ : S × S → R be such that

u = û + δ. Though we do not know u, we
know that that ∥δ∥ ≤ ϵ by assumption. We can

2See Proposition 5 in the Appendix for a more general characterization.



rewrite our dynamical system as follows: θ̇t(s) =
θt(s)[ût(s)+ δt(s)+kt(s)−Es′∼θt [ût(s

′) + kt(s
′)]− δ̄t] =

θt(s) [ût(s) + kt(s)− Es′∼θt [ût(s
′) + kt(s

′)]] +
Nt(s) = y(θt, kt, s) + Nt(s), where δt(s) =
Es′∼θt [δ(s, s

′)] and δ̄t = Es∼θt [δt(s)], y(θt, kt, s) =
θt(s) [ût(s) + kt(s)− Es′∼θt [ût(s

′) + kt(s
′)]], and

Nt(s) = θt(s)(δt(s)− δ̄t). Observe the following bound on
Nt(s): ∥Nt(s)∥ = ∥(Is − θt)

⊤Dθt∥ ≤ 1 · ϵ · ∥θt∥ where
Is ∈ R|S| is a basis vector such that it has 1 as its s-th entry
and zero otherwise, and D is the matrix representation of δ.

Observe that our controller, as it is feedback lineariz-
ing, induces the following closed-loop dynamics: θ̇t(s) =
−λθt(s) + Nt(s). Note that the there being finitely many
strategies makes it clear that the expectation, and thus the
controller, is smooth in the state. Given this, using V (x) =
1
2x

⊤x as our Lyapunov function, which clearly satisfy the
conditions of the converse Lyapunov theorem [14], gives
us exponential stability of θ̇t(s) = −λθt(s). Note that
c1 = c2 = 1

2 , c3 = λ, and c4 = 1.
Note that since the unknown error term δ is bounded,

enters linearly into the known dynamics, and our known
dynamics can be stabilized to an arbitrarily small ball, we can
leverage Proposition 5 (see Appendix). In particular, choose
p′ ∈ relint(∆(S)) such that ∥p − p′∥ < ϵ′ − ϵ

λ . Consider
the controller with respect to p′, and since our technique
of feedback linearization induces the above exponentially
stable linear system, we have that κ = ϵc4

c3

√
c2
c1

= ϵ
λ . Thus

θt → Bϵ(p
′) and thus is within θt → Bϵ′(p).

To see the second claim, observe that by assumption, ϵ <
λ = c3

c4
, hence by Proposition 5, we have that the rate of

stabilization is λ − ϵ and that the overshoot constant m =√
c2
c1

= 1.

This result shows that for a fixed λ, we can always
achieve approximate asymptotic stability wherein we reach
ϵ-ball around our target. Thus our worst case error due
to misspecification is linear in the misspecification error.
Furthermore, if we choose λ sufficiently large, then we are
still able to exponentially stabilize at a slower rate as if
our model were correctly specified. In cases where we have
constraints or transfer cost considerations, we may be unable
to choose a large enough λ, and thus the former result gives
us a necessary approximation guarantee.

V. TRADEOFFS IN IMPLEMENTATION

In this section we analyze the tradeoffs induced by sta-
bilization when transfers are costly. This is motivated by
the idea that large transfers, which represent payments to or
from agents, may not be favourable as they impose a large
monetary burden on agents or the planner. Consider the task
of stabilizing to an ϵ-ball around a distribution p ∈ ∆(S).
Recall that by applying our controller, we can stabilize to a
distribution in O( 1λ ) time for λ > 0. In that time, we can
bound the cumulative value of a quadratic cost as follows:

Proposition 2: Fix λ > 0, p ∈ ∆(S), and ϵ > 0.
Then the cost, as defined by cost : K → R+, of our

feedback controller can be bounded as follows: cost(kt) =∫ t̄ϵ(λ)

0

∑
s∈S ∥kτ (s)∥2 · dτ ≤ O(λ).

This emphasizes that in the worst case, the cost of our
controller is increasing linearly in λ, whereas the time to
(approximate) stabilization is decreasing in λ at rate propor-
tional to 1

λ . How to balance these tradeoffs is application-
specific, and in the next section, we consider one approach
to do so.

A. Optimal Control of Population Dynamics

To capture the tradeoff between stabilization and control
costs, we use the following functional that mimics stabiliza-
tion problems commonly seen in control applications: for
k ∈ K a controller, p some target distribution, and ρ > 0,
define J [k] =

∫∞
0

∑
s∈S

(
∥θτ (s)− p(s)∥2 + ρ∥kτ (s)∥2

)
·

dτ . Hence our optimization problem is infk(s):[0,∞)→R J [k]

subject to
∑

s∈S θt(s)kt(s) = 0 ∀t ≥ 0, and θ̇t(s) =
fs(θt)+gs(θt)kt(s) ∀s ∈ S. Note that the solution has finite
value only if kt asymptotically stabilizes the system to p.

Though not optimal, the use of feedback linearization can
help to provide sub-optimality guarantees. If no structure
is imposed on p, then in general control costs in the long
run may be infinite. For example, this may occur if we’re
trying to stabilize to a non-equilibrium point since a constant
control input would have to be applied for all time. If p were
locally exponentially stable, then we have stronger results.
An example of a population game with the above property
is the following:

Example 1: Consider the coordination game given by
strategies {A,B} and the symmetric utility function:
u(x, y) = 2 if x = y = A, 1 if x = y = B, and 0
otherwise. The two pure strategy NE are (A,A) and (B,B),
and the mixed strategy NE is ( 13 ,

2
3 ). Letting xt = θt(A),

we have the following replicator dynamics: ẋ = −3x2(x −
1
3 )(x − 1). It is straightforward to find that the system is
locally exponentially stable around [0, 1

3 ).
Theorem 3: Let p be a locally stable Nash s.t Bϵ(p) ∩

∆(S) is a subset of its region of attraction (ROA) with
exponential rate γ > 0. Let λ > 0. Fix θ0 ∈ relint∆(S).
Then we have that ∃δ(p, x0) ∈ (0, 1) and c, η > 03 such that
mink(s):[0,∞)→R J [k] is upper bounded by

O(
η

γ
λ

γ
)︸ ︷︷ ︸

State cost in ROA

+ O(
1

λ
)︸ ︷︷ ︸

State cost outside ROA

+ ρ · O(λ)︸ ︷︷ ︸
Control cost

This result can be used by planners as a means of inform-
ing what values of λ and p are reasonable by giving an upper
bound on the overall cost as a function of these variables.
This is in contrast to repeatedly running simulations for
different combinations of these variables, thus providing a
useful tool for quick analysis. For example, in the setting
of traffic tolling, the trade-off between fast stabilization to
socially optimal traffic flows and the size of transfers can be
analyzed more easily.

3Constant factors and lower order terms are omitted in the expression for
clarity.



Fig. 1: The initial conditions are (θ0(si))
3
i=1 ∈

{(0.9, 0.05, 0.05), (0.1, 0.8, 0.1), (0.1, 0.3, 0.6)}.

VI. APPLICATION: NON-ATOMIC ROUTING GAME

In this section, we study our proposed controller in the
setting of a non-atomic routing game. Consider a continuum
of agents with total demand 1, and the same origin and
destination. Their strategy s ∈ S is a choice of route, with
associated cost given by the function l : [0, 1] → R where
ls(θ) is the time taken to reach the destination (from the
origin) when the flow of traffic is distributed across routes ac-
cording to θ. This is no longer a normal-form game, however
can now be expressed as a population games by considering
F̂s(θ) = −ls(θ). Though our results are written in for
two player games, it straightforwardly applies to population
games by considering θ̇t(s) = θt(s) [Fs(θt)− θt · F (θt)]
where Fs(θ) = F̂s(θ) + k(s, θ).

Consider the following example4. The set of strategies will
be denoted S = {si}3i=1, and the origin and destination are
denoted O and D respectively. S represent a set of parallel
routes between O and D. The corresponding costs will be
given by lsi(θ) = −(i · θ(si)2 + i). In Figure 1, we simulate
the replicator dynamics for various initial conditions under
our controller as well as with no controller, with the goal
of stabilizing to θ∗ ≡ 1

3 . Observe that under our controller,
the dynamics of the system approach the target in a straight
line. This is a consequence of our system being feedback
linearized, thus allowing for such a linear change in state.

VII. DISCUSSION

In this section, we provide a discussion on different aspects
of our model, potential limitations of our approach, and
future directions of exploration.

a) Payoff Information: Our results heavily rely on the
designer having complete information of payoffs, that is
the function u. Though ϵ misspecified utility function, as
described in Theorem 2, has approximation guarantees linear
in ϵ, this may still be impractical in reality when there is
little data from which utility functions can be estimated
from. Hence the application of our controller works best in
environments such as traffic routing, where utility functions
can be readily estimated due to a surplus of data.

4This examples is similar to that of [10], except we have fewer routes so
that we can plot the results on the simplex.

b) Dynamics Model: Our analysis uniquely builds on
the replicator dynamics, which is one of many evolutionary
dynamics models [1]. There is evidence to support that in
some settings, the replicator dynamics model can explain
human behvaiour [15], [16], we are limited in our ability to
model more general environments such as those in payoff
dynamics models [8].

c) Practical Implementation: Our model is formulated
in continuous time, hence our feedback controller may suffer
from practical issues such as delays when implemented
discretely. However, the degree to which this is an issue
depends on the application. In our motivating example of
traffic tolling, the time difference between successive periods
represents the time between two different journeys. It is
reasonable to assume that this is sufficiently long. In general,
we model behavioral change and thus the rate at which
this is believed to occur informs whether a discrete time
implementation poses issues.

APPENDIX

A. Proof of Theorem 1

First assume that kt(·) is budget-balanced. Applying
the tools of feedback linearization, we choose kt(s) =
vt(s)−fs(θt)

gs(θt)
. This is well-defined through the following:

Proposition 3: Consider X = R, ẋ = u, x0 ∈ (0, 1) and
x∗ ∈ (0, 1). Then ∀λ > 0, ∃δ ∈ (0, 1) and u : [0,∞) → R
such that x0, x

∗, xt ∈ [δ, 1− δ] ∀t ≥ 0.
Proof: Clearly ∃δ > 0 s.t x0, x

∗ ∈ [δ, 1− δ]. Consider
the error dynamics q = x − x∗ and controller u = −λe.
Hence xt = e−λtx0 + (1− e−λt)x∗, implying our result.
As the control system stays in some compact subset of the
relative interior of the simplex, kt is well-defined always
since its application to our model results in the same
dynamics ẋ = u. Now observe that

∑
s θt(s)kt(s) =

0 ⇐⇒
∑

s vt(s) = 0. Note that since feedback lin-
earization decouples a system into many one-dimensional
linear systems, if each system is exponentially stabilizing
with the same rate, then so is the whole system. That is,
of qt(s) → 0 with exponential rate λ (and M = 1) for
all s ∈ S, then qt → 0 with the same rate (with M =
1). Consider p ∈ relint(∆(S)) and a feedback linearizing
controller kt(s) with respect to some vt(s). Assuming that
the overall controller is budget-balancing, the linearized
dynamics are θ̇t(s) = vt(s). Choose vt(s) = −qt(s) for
qt(s) = θt(s) − p(s). Furthermore, the controller satisfies
budget-balance:

∑
s∈S vt(s) = −

∑
s∈S(θt(s) − p(s)) =

−
∑

s∈S θt(s) +
∑

s∈S p(s) = 0. Note that we can use any
controller of the form vt(s) = −λqt(s) for λ > 0, thus
we can choose the rate of exponential stabilization. Note the
following time-guarantee result:

Proposition 4: For all ϵ > 0 and p ∈ (∆(S)), there is a
time t̄ ∈ [0,∞) s.t θt ∈ Bϵ(p) ∀t > t̄ϵ(λ) = 1

2λ ln 4∥q0∥2

ϵ2

for some controller kt.
Proof: Choose p′ ∈ B ϵ

2
(p) ∩ relint(∆(S)). Recall that

we can choose the rate of exponential stability for any λ > 0
when implementing a feedback linearizing controller with



respect to p′. Note that q̇t = −λqt implies that ∥et∥2 =
∥q0∥2e−λ2t. To ensure ∥qt∥ ≤ ϵ, we can upper bound the
term on the right-hand side by δ > 0 first: ∥q0∥2e−λ2t ≤
δ2 ⇐⇒ 1

2λ ln ∥q0∥2

δ2 ≤ t. Set t̄ϵ(λ) := 1
2λ ln ∥q0∥2

δ2 to ensure
∥qt∥ ≤ δ. Choose δ := ϵ

2 to find that ∥qt∥ ≤ ϵ
2 . Let q̃t =

θt − p, hence ∥q̃t∥ ≤ ∥θt − p′∥+ ∥p′ − p∥ = ϵ.

B. Proof of Proposition 2

We aim to bound the following: cost(kt) =∫ t̄ϵ(λ)

0

∑
s∈S ∥kt(s)∥2 · dt First note that ∥kt(s)∥ ≤

(λ∥qt(s)∥δ + c)2, which follows from there existing
δ > 0 such that θt(s) ∈ [δ, 1 − δ] (see proof of
Theorem 1) and ∃c > 0 such that ∥ut(s) − ūt∥ ≤
c (see proof of Theorem 3). First note that
cost(kt) ≤

∫ t̄ϵ(λ)

0

∑
s∈S

[
λ2 ∥qt(s)∥2

δ + 2cλ∥qt(s)∥δ + c2
]
·

dt. We bound each term individually. First,∫ t̄ϵ(λ)

0

∑
s∈S λ2 ∥qt(s)∥2

δ · dt ≤ λ2

δ

∫ t̄ϵ(λ)

0
∥q0∥2e−2λt · dt =

O(λ),
∫ t̄ϵ(λ)

0

∑
s∈S c2 = |S|c2t̄ϵ(λ) = O( 1λ ). Secondly,∫ t̄ϵ(λ)

0

∑
s∈S 2cλδ ∥qt(s)∥ · dt = 2cλδ

∑
s∈S

∫ t̄ϵ(λ)

0
∥qt(s)∥ ·

dt ≤ 2cλδ
∑

s∈S ∥q0(s)∥
∫ t̄ϵ(λ)

0
e−λt · dt = O(1). Putting

this all together, we get that cost(kt) ≤ O(λ).

C. Proof of Theorem 3

Let k̃t(s) be the controller from the previous proposition,
and p′ ∈ relint(∆(S)) be the target distribution.
Define the following controller: kt(s) = k̃t(s) if
t ≤ t̄(λ) and 0 otherwise. We first upper bound the
optimal value by the value of the feedback linearizing
controller:

∫ t̄(λ)

0

∑
s∈S

(
∥θτ (s)− p(s)∥2 + ρ∥kτ (s)∥2

)
·

dτ +
∫∞
t̄(λ)

∑
s∈S

(
∥θτ (s)− p(s)∥2 + ρ∥kτ (s)∥2

)
·

dτ . Consider the second component:∫∞
t̄(λ)

∑
s∈S

(
∥θτ (s)− p(s)∥2 + ρ∥kτ (s)∥2

)
· dτ ≤∫∞

t̄(λ)
∥qt̄(λ)∥2e−2γτ · dτ ≤ ϵ2

[
− e−2γτ

2γ

]∞
t̄(λ)

=

ϵ2

2γ

[
4∥q0∥2

ϵ2

]− γ
λ

= O(η
γ
λ

γ ), where we set η = ϵ2

4∥q0∥2

and leverage the fact that θτ ∈ Bϵ(p) for all τ ≥ t̄(λ) by
design of the controller. Now we consider the first portion of
the bound, specifically the state cost:

∫ t̄(λ)

0

∑
s∈S ∥θτ (s) −

p(s)∥2 · dτ ≤
∫ t̄(λ)

0
(∥θτ − p′∥+ ∥p′ − p∥)2 · dτ ≤∫ t̄(λ)

0

(
∥θτ − p′∥+ ϵ

2

)2 · dτ ≤
∫ t̄(λ)

0

(
∥q̃τ∥+ ϵ

2

)2 · dτ ≤∫ t̄(λ)

0

(
∥q̃0∥e−λτ + ϵ

2

)2 · dτ . This final term is O( 1λ ), and
where q̃τ = θτ − p̃ and we use the property that under
the controller we exponentially stabilize to p′ with rate
λ. To consider the control cost, recall the form of the
controller kt(s) for s ∈ S: kt(s) = −λ q̃t(s)

θt(s)
− ut(s) + ūt

implies that ∥kt(s)∥ ≤ λ∥q̃t(s)∥
δ + ∥ut(s) − ūt∥, where

δ = mins∈S min{δs, 1 − δs} and δs is as per the previous
lemma (with respect to p′ and θ0). This follows since
|θt(s)| = θt(s) > δs ≥ δ. To bound the norm of the relative
fitness, we have the following: ∥ut(s) − ūt∥ ≤ c where
c = maxs,s′∈S |u(s, s′)|. Thus we can bound the control
cost as follows: ρ

∫ t̄(λ)

0

∑
s∈S ∥kτ (s)∥2 ·dτ ≤ ρO(λ), where

we use the result from Proposition 2. Together these bounds
give O(η

γ
λ

γ ) +O( 1λ ) + ρO(λ).

D. Robustness of Exponential Stability

Note the following result [14]: ẋ = f(x) is exponentially
stable if and only if there exists c1, c2, c3, c4 > 0 such
that c1∥x∥2 ≤ V (x) ≤ c2∥x∥2, LfV (x) ≤ −c3∥x∥2, and∥∥∂V

∂x (x)
∥∥ ≤ c4∥x∥, where LfV (x) is the Lie derivative with

respect to f, i.e LfV (x) = V̇ (x) = ∂V
∂x (x) · f(x).

Proposition 5: If ẋ = f(x) is globally exponentially
stable with respect to the origin on B1(0), then for ẋ =
f(x) + q(x) such that ∥q(x)∥ ≤ ϵ for all x ∈ X , xt

asymptotically stabilizes to Bκ(0) where κ = ϵc4
c3

√
c2
c1

. If
∥q(x)∥ ≤ ϵ · ∥x∥, where ϵ < c3

c4
, then xt exponentially

stabilizes to the origin at rate λ
2c2

.
Proof: Lemma 5.2 in [17] with δ = ϵ, r = 1 and

θ < 1 sufficiently large gives us that Bκ(0) is asymptotically
stabilized to. If ∥q(x)∥ ≤ ϵ · ∥x∥, then V̇ (x) ≤ (ϵ · c4 −
c3)∥x∥2. Let λ = ϵ·c4−c3 < 0. Then V̇ (x) ≤ λ

c2
V (x), hence

V (xt) ≤ e
λ
c2

tV (x0). Using the upper annd lower bounds on
V, we can see that ∥x∥ ≤

√
c2
c1
e

λ
2c2

t∥x0∥.
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