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Abstract

This paper develops a model of paired exchange that integrates multiple donation

technologies with observable risks. Integration provides more opportunities for patient-

donor pairs to match, while reducing the risks placed on donors by providing safer pro-

cedures to be taken when possible. We construct pairwise exchange mechanisms that

satisfy efficiency, stability, and strategy-proofness, and study applications including

exchanges with different organ pools, kidney exchange with ABO-desensitization, and

exchanges with multiple donors. We analyze the welfare improvements of integrating

a kidney and liver exchange over non-integrated exchanges, where simulations find a

10 to 20% relative increase in transplants under reasonable conditions.

1 Introduction

For patients suffering from organ failure, such as renal or liver failure, transplantation from

a willing donor is an effective means of improving the patient’s life expectancy. However,

a key concern is the donor’s health, which can be negatively affected by undergoing the

transplant procedure. As such, it is of utmost importance for doctors to ensure that risks

and benefits are appropriately balanced and agreed upon by both parties. As opposed to

direct donation, which relies on willing and compatible donors, when patients have willing

but incompatible donors, paired donor exchange has emerged as a means to take advantage

of a coincident of wants : when there are two pairs in such a situation, but the patient of
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each pair is compatible with the donor of the other pair, then they can exchange donors and

undergo their respective operations.

This setting has been well studied for exchanges in many organ markets, such as for

kidneys (Roth et al., 2005), livers (Ergin et al., 2020) and lungs (Ergin et al., 2017). Yet it

might be possible to allow for exchanges across these markets. Such an idea was discussed

by Dickerson and Sandholm (2017), who proposed a computational approach to showcase

the benefits of such an integration. For example, consider allowing a pair that requires

a kidney donation and pair that requires a liver donation, to exchange donors who then

donate different organs. By allowing donors to donate organs different than what their

patient requires, or potentially donate in different ways such as through ABO-desensitization1

of the patient (Andersson and Kratz, 2020) or different lobes of the liver (Ergin et al.,

2020), this can increase the number of compatible transplants a patient has. Such a swap

has informally occurred before, where a patient-donor pair saw the work of Dickerson and

Sandholm (2017) and were motivated by this new possibility (CMU, 2019). However, there

is still no centralized mechanism that allows for such an option. Rather than force pairs to

instigate such possibilities, which would require finding another willing pair to participate in

the swap, we propose developing an exchange that integrates multiple modes of donations

into a single paired exchange.

In addition to increasing the number of matching opportunities, donors whose only op-

tions were to undergo riskier transplants in order for their patient to receive a new organ now

have more options available to them. In the case of kidneys and livers, the latter is a riskier

donation for living donors in both mortality and morbidity2. Consider a kidney patient Alice

whose donor Bob is willing to donate either a kidney or liver, but there is no other kidney

patient they can be matched with. As well, there is a liver patient Claire whose donor David

can donate either organ, and they have the option of being matched in an exchange with a

kidney or liver patient. In this case, we can reduce unnecessary risks to David by allowing

them to donate a kidney to Alice. Though Bob must now take on a greater risk by donating

a liver to Claire as opposed to a kidney, it is the only available option to them. By combining

exchanges, we have the option of limiting donor risks through such trades. We believe this

to be an important consideration for increasing donor participation in paired exchange.

The literature has largely studied how to design organ exchanges for specific organ pools,

1This refers to a procedure that a patient undergoes in order to reduce the potential of rejection if they
were to receive a blood-type incompatible kidney. In doing so, they can increase the set of feasible transplants
available to them.

2Gaston et al. (2015) find that the mortality rate for living kidney donors to be 0.03%, and mortality
rates to be less than 1%. As noted in Ergin et al. (2020), Lee (2010) find a mortality rate for left and right
lobe liver donation to be 0.1% and 0.4-0.5% respectively, and Mishra et al. (2018) find morbidity rates to be
7.5% and 28% respectively.
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yet different organs can introduce unique challenges. For example, liver exchanges can allow

for two modes of transplants: left and right lobe transplant (Ergin et al., 2020). Both modes

of transplants require blood type and size compatibility, where the latter requires a patient

receives a liver greater than some minimum size specific to the patient. The right lobe is

preferred in one sense - as they are bigger than left lobes, donating via them increases the

number of compatible recipients compared to donating via the left lobe. This is helpful for

a pair in the exchange as they have more opportunities to be match in a pairwise exchange

with another pair. However, right lobe transplants are riskier than left lobe transplants for

donors, and thus pairs may have different levels of risk they are willing to undertake. This

can lead to non-trivial incentive issues that relate to truthful reporting of a pair’s willingness

to undergo different donation modes. Similarly, due to improvements in medical technology,

the standard model of kidney exchange that typically has a single mode of donation can be

expanded. Andersson and Kratz (2020) studies the use of immunosuppressant technology

to allow patients to be blood type compatible with any donor. This can be seen as a new

donation mode, and as emphasized in their work, this mode is less desirable to receive than

being matched with an already compatible donor.

This paper takes a market design approach to implementing paired exchange across

different modes of donation. We identify a coincidence of wants through the integration of

new types of donation, such as different modes of donating a certain organ (e.g. left or right

lobe of a liver) as well as donating different organs (e.g. kidney or liver). Given this, we

ask how can we design desirable mechanisms. Our criteria for desirability include classic

objectives in the field - efficiency, strategyproofness, and individual rationality - as well as

a novel condition not usually studied in the literature3 - weak-core stability. We provide a

motivation for this as a means of mitigating strategic participation incentives by hospitals

(Ashlagi and Roth, 2014). As we observed with comparing the risks between kidney and

liver donation, as well as with ABO-incompatible donation, many risks are objective. We

leverage these assumptions on the commonality of preferences when designing a mechanism.

The main piece of private information is willingness level, that is, at what point is a modality

by which to donate or receive via too risky.

We begin our exploration by studying dual-mode exchanges, that is exchanges where

agents can participate by donating, or receiving, via two different means. We motivate this

environment by considering two working examples. We first study kidney donation with

ABO-incompatible donations, where patients can receive a blood type compatible or incom-

patible kidney from a donor, however the latter is less preferred due to the financial burden

3Though common in the general market design and matching literature, it is not usually studied in
application to paired exchange.
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it places on the patient (Andersson and Kratz, 2020). We also consider organ exchange when

two donors are available to be used and preferences are “risk-ordered” (i.e. based in objec-

tive medical risk). These working examples are nested in an abstract model of dual-mode

exchange, and in doing so we generally characterize what exchanges admit desirable mecha-

nisms. In particular, we propose a condition called weak acyclicity and find it to be necessary

and sufficient. We apply our sufficiency result to kidney exchange with ABO-incompatible

donation, and with two risk-ordered donors, to construct a desirable mechanism using pre-

vious work by Ergin et al. (2020). On the other hand, we use our necessity result to find

that liver exchange with two risk-ordered donors does not have a desirable mechanism.

We then study how to develop mechanisms for more general multi-modal exchanges. Our

working example of interest is the integration of kidney and liver exchanges, where donors

can donate via their kidney, left liver lobe, or right liver lobe. This is a specific instance of

a general model that integrates arbitrarily many exchanges for different organs, where pref-

erences over participating in an exchange reflect the objective medical risk of donating. We

identify an ideal property of a multi-modal exchange that builds on the notion of acyclicity

in Ergin et al. (2020), which we term separability. We find that this creates a structural

decomposition within the space of modalities, and allows us to develop a simple desirable

mechanism for multi-modal exchanges. When a multi-modal environment is not completely

separable, but satisfies such properties in a certain partitional sense, we show that if there

are desirable mechanisms for each element of a partition of the modality space, then we can

create a modular “meta-mechanism” that retains the desirable properties if preferences on

modalities are common. For example, if we have a desirable mechanism for kidney and liver

exchange separately, we are able to “stitch” them together in a way that preserves their prop-

erties. The promise of this approach lies in modeling the integration of risk-ordered organ

exchanges, which we find to naturally satisfy partition separability. We find such a modular

approach to be important given that modes of organ donation are routinely being developed

as the medical field progresses, both in existing organ exchanges and potentially new ones.

Thus having a mechanism that can seamlessly integrate desirable mechanisms specific to

each exchange into a single desirable mechanism for the whole exchange allows our approach

to be robust to future technological advances. Though it is plausible that market integration

can have positive welfare effects in this context4, the idea that mechanisms specific to each

market can be combined to form a new desirable mechanism for the integrated market is

novel.

An application of key interest is the simple but practical model of integrating kidney and

4Market integration in general is not always welfare improving. See Kumar et al. (2022) for an analysis
of the integration of Shapley-Scarf markets.
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Donor Exchange

Dual-Mode (S4)

KE w/ Desensitization (S4.2) Risk-Ordered Donors (S4.3)

Kidney Exchange Liver Exchange

Multi-Modal (S5)

Partition Separable (S5.1) Kidney-Liver (S5.3)

Figure 1: Diagram of Results and Applications. Result type: a desirable mechanism exists,
a desirable mechanism does not exist, and ssimulation of a desirable mechanism.

liver exchanges. To characterize any welfare improvements over the status quo baseline, that

is pairwise matchings in each organ exchange independently, we show that our mechanism

always provides a weak increase in the number of matches. We complement this theoretical

result with simulations that quantify, using Korean patient data, anticipated gains from

integrating the exchanges across various assumptions on risk-tolerance of patients. We find,

across such tolerances, anywhere from a 10 to 20 percent relative increase in the number of

transplants over the baseline.

Outline. This paper is organized as follows. Section 2 describes the general model con-

tained within this paper, as well as our desiderata and domain-specific background. Section

3 provides some background on medical and institutional factors pertaining to organ ex-

change, which informs the design of our solution. Section 4 studies exchanges with two

donation modes, providing a theoretical characterization of which such exchanges admit de-

sirable mechanisms (Section 4.1) and analyzing specific applications: kidney donation with

ABO-desensitization (Section 4.2) and two risk-ordered donors (Section 4.3). Section 5 stud-

ies a specific environment with more than two modes, which we refer to as a risk-ordered

integration of exchanges. Section 5.3 provides a simulation analysis of integrating kidney

and liver markets. Our theoretical results are summarized in Figure 1.

1.1 Related Literature

Kidney Exchange. The kidney exchange literature in market design begins with Roth

et al. (2004), which provides a modification of the top-trading cycles algorithm (TTC) to

allow chains of kidney donation instigated by unpaired donors to be performed. Practical
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considerations such as pairwise cycle restrictions with dichotomous preferences5 were ex-

plored in Roth et al. (2005), where tools from matching theory were leveraged. More general

cycle restrictions were subsequently studied in Roth et al. (2007), where the goal was to

identify transplant maximizing exchanges under different size restrictions. Such restrictions

are important in practice, and appear as a necessary constraint in the literature on organ

exchange (Ergin et al., 2020, 2017; Andersson and Kratz, 2020). When preferences can be

richer, such as those over kidneys (Roth et al., 2004; Nicolo and Rodriguez-Alvarez, 2017),

then the problem resembles a house exchange problem with cycle constraints. It is known

that in general it is diffuclt to satisfy efficiency and strategyproofness as a result (Balbuzanov,

2020; Kamada and Yasuda, 2025).

Other Exchanges. Other types of organ donation and technologies have been studied,

including liver exchanges (Ergin et al., 2020), dual-donor exchanges like lung and kidney-

liver (Ergin et al., 2017), ABO-incompatible kidney donation via desensitization (Andersson

and Kratz, 2020; Heo et al., 2022), and multi-donor kidney exchange (Gilon et al., 2019).

We generalize the results of Ergin et al. (2020) to allow for wider application to dual-mode

environments - that is environments with two means of donating or receiving - such as

desensitization and two-donor kidney exchange under risk-preference assumptions. We also

consider strategy-proofness and weak-core stability for pairwise exchanges as part of our key

criteria, and previous literature has not studied at least one of these properties. Andersson

and Kratz (2020) primarily characterize the structure of efficient matchings in their setting,

and note that there can be incentive issues. Our work shows that this can be dealt with

while maintaining efficiency. Gilon et al. (2019) study organ exchange where patients can

bring multiple of their own donors to the exchange. Though they are motivated by kidney

exchange, they consider an abstract compatibility. We impose structure on the set of feasible

trades using the compatibility graph, as well as assumptions on preferences, to achieve

positive results.

Exchange Integration. Similar to our work is that of Watanabe (2022), who take an

approach like that of Ergin et al. (2020) and apply this to the integration of kidney and

liver exchanges. Our algorithms are similar when we restrict attention to their environment,

however our approach exposes a simpler, intuitive structure due to its modularity and ab-

straction. In particular, our algorithm can be agnostic to the underlying mechanism used in

each of the kidney and liver exchange, while preserving their properties. Furthermore, our

5This refers to preferences where only compatible matches and being unmatched are individually rational,
and all compatible matches are indifferent to one another but are strictly preferred to being unmatched.
These are also know an 0-1 preferences.
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model is able to generalize to new environments, and we provide a stronger theoretical char-

acterization of our solution by showing weak-core stability and welfare improvements over

the baseline. Dickerson and Sandholm (2017) also study a similar problem of integrating

kidney and liver markets, but primarily focus on a computational approach to transplant

maximization and largely ignore preferences and incentives.

2 Model

Let I be the set of agents, where N = |I|, and ti ∈ Ti be the type of agent i. Let M =

{m1,m2, ...} denote the set of modalities, and ∅ denote the outside option (i.e. not being

matched). We assume agents have strict preferences over M ∪ ∅ such that mk ≻i mk+1

and m1 ≻i ∅. Note that this implies that agents have a common preference ranking over

modalities, reflecting our common risk ordering assumption6. Let the space of preferences

be given by R. However, the preferences of agents may differ in how they rank the ∅. For a
subset of agents A ⊆ I, m ∈ M and a preference profile ≻∈ RN , we let A∅(m| ≻) be the

set of agents that do not find mi individually rational, i.e. A∅(m| ≻) = {i ∈ A|∅ ≻i mi}.
Let τm : T × T → {0, 1} be the compatibility function for modality m ∈ M. That

is, an agent i can donate via mode m to agent j if and only if τm(ti, tj) = 1. Otherwise

τm(ti, tj) = 0. We use the notation i→m j to mean that i can donate to j via modality m,

i.e. τm(ti, tj) = 1. Correspondingly, if i cannot donate to j via modality m, then we use the

notation i ̸→m j.

Define an exchange problem to be the tuple E = (I, T ,M, τ,R), and the analogous

family of exchange problems to be given by

E = {E = ({1, . . . , n}, T n,M, τ,R)|n ∈ N, τm : T × T → {0, 1}}

The compatibility graph with respect to an exchange is an edge-labeled directed graph

GE = (V,E), where V = I is the set of vertices and E ⊆ V ×V ×M the set of labeled edges

such that (i, j,m) ∈ E if and only if i→m j. Let Gm
C denote the directed graph induced by

only considering edges corresponding to modality m, and Ḡm
C denote the undirected graph

where an edge between (i, j) exists if (i, j,m), (j, i,m) ∈ E. We say a cycle is an n-cycle if it

is of length n. A matching is a set of disjoint 2-cycles in the compatibility graph. Denote

the set of matchings by M, which is implicitly determined by the exchange problem E being

considered. Let I(F ) be the set of agents involved in a matching F . We will use the notation

6This is a necessary assumption in our work. We motivate this with the claim that medical risk are
objective, and are often a key part of agents’ preferences. However, there are reasonably cases where this
may not always hold. We note such a case in Footnote 10.
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FI(i) = j for j ∈ I such that there exists m ∈M where (i, j,m) ∈ F . Similarly, FM(i) = m

for m ∈ M such that there exists j ∈ I where (i, j,m) ∈ F . That is, FI(i) is the agent i

donates to in F , and FM(i) is the mode that i donates via in F .

With abuse of notation, we say that M ⪰i M ′ for M,M ′ ∈ M if and only if MM(i) ⪰i
M ′
M(i). In other words, an agent i (weakly) prefers the matching M over M ′ if and only if

they are donate via a weakly preferred modality in M than in M ′.

Given a graph G = (V,E), the induced subgraph with respect A ⊆ V is G(A) = (A,EA)

where EA = E ∩ (A × A). Define a priority order Π to be a strict total order on I. We

let MaxMatch(G|Π) denote a maximum cardinality matching of the graph G with prior-

ity determined by Π. For a bipartite graph G with partitions A and B, define similarly

BipartiteMatch(G|Π, A,B). Though both functions maximize the cardinality of a match-

ing in G, because of priorities the underlying algorithms are different as BipartiteMatch

exploits the structure of a bipartite graph, whereas MaxMatch applies to general graphs7.

For (i,m) ∈ I ×M and A ⊆ I ×M, let Matchable(i|G,A) output True if i ∈ I can

be matched via m in G while ensuring that for all (j,m′) ∈ A, j can be matched via m′.

Otherwise it will return False8.

Given a family of exchange problems E, a family of matching mechanisms is ϕ : E×RN →
M. A mechanism with respect to a specific E ∈ E will be denoted ϕE , and if E or E is clear

from context, we will simply use ϕ and refer to it as a mechanism.

2.1 Desiderata

In this section, we describe various desiderata. Fix E ∈ E and ⪰∈ RN . A matching M is

1. individually rational if for all i ∈ I, M ⪰i ∅.

2. Pareto efficient if there does not exist M ′ ∈M such that M ′ ⪰i M for all i ∈ I and

there is some j ∈ I such that M ′ ≻j M .

3. weak-core stable if there does not exist non-empty C ⊆ I and a matching M ′ ∈M

such that for all i ∈ C, M ′ ≻i M , and for all i ∈ C we have that j =M ′
I(i) ∈ C.

A generally weaker condition than weak-core stability is pairwise stability, which re-

quires that there does not exist i, j ∈ I and m,m′ such that i→m j, j →m′ i, m ≻i MM(i),

7This affects the time complexity of the algorithm, unlike in maximum matching without priorities where
the Micali-Vazirani algorithm (Micali and Vazirani, 1980) for general graphs matches the worst-case time
complexity of the Hopcroft-Karp algorithm (Gabow, 2017) for bipartite matching. When there are priorities,
bipartite graph algorithms (Turner, 2015) generally have a lower worst-case time complexity than for general
graphs (Okumura, 2014).

8Checking matchability for pairwise exchanges can be done in polynomial time. Ergin et al. (2020)
describe such a function.
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and m′ ≻j MM(j). Note that when indifferences exist in a model, only the weak-core and

not the strong-core9 is guaranteed to exist.

Finally, a mechanism ρ is strategy-proof if for all i ∈ I, ≻∈ RN and ≻′i∈ R, then
ρ(≻) ⪰i ρ(≻′i,≻−i). That is, it is a weakly dominant strategy for agents to report preferences

truthfully. For E ∈ E, we say a mechanism ϕE is satisfactory if ϕE is strategy-proof, and

all elements of its range are Pareto-efficient, individually rational, and weak-core stable. For

a family of mechanisms ϕ, if for every E ∈ E we have that ϕE is satisfactory, then we say

that ϕ is desirable.

The following simple result highlights that, in the setting of matchings, pairwise stability

is sufficient for weak-core stability:

Proposition 1. An individually rational pairwise stable matching is weak-core stable (among

matchings).

Proof. See Appendix A.1.

3 Background

We provide some institutional background to motivate common assumptions, considerations

and restrictions in the literature that will be leveraged in our work.

3.1 Simultaneous Operations.

An important point is when an exchange between multiple pairs is done, it tends to be the

case that the operations are done simultaneously. The reason for this is that if the patient

of one pair has received an organ from another donor, and their donor has not yet donated,

there cannot be any punishment to the donor or the patient should the former choose not to

donate. That is, we cannot force the donor to donate, nor take back the organ transplanted

to the patient. Thus doing sequential or asynchronous operations can lead to a holdup

problem. Although this problem is alleviated when considering chains of donation that are

initiated by a deceased donation, in our setting we only consider paired donation.

3.2 Small Exchanges.

The literature often considers pairwise exchanges, that is the restriction that any pair i

whose donor donates to the patient of pair j also has the donor of pair j donating to the

9The strong core requires that in a blocking coalition, all agents weakly improve and at least one agent
strictly improves over their original allocation.
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patient of pair i. Though it is possible to do larger size exchanges, and this has been done

in reality, there are a number of considerations that make pairwise exchange a good starting

point in theory and practice. Due to the requirement of having simultaneous operations,

smaller size exchanges are preferred as large exchanges can impose a prohibitively great

logistical and medical burden on the hospital performing the multiple operations. However

it is also common to have three-way exchanges in kidney exchange (Ashlagi and Roth,

2021). Our work introduced different methods of donation in a single model, hence may

require different expertise and considerations of potentially complications due to the need

of simultaneous operations. As such, we consider pairwise exchanges primarily as this is

practically most feasible in an initial implementation. Beginning with such an approach in

novel environments is common in the literature, as in the initial papers on kidney exchange

with ABO-desensitization (Andersson and Kratz, 2020) and liver exchange (Ergin et al.,

2020).

3.3 Tissue-Type Compatibility.

From a medical point of view, an important factor in the ability of a donor to be able

to donate to a patient is their mutual biological compatibility (Roth et al., 2007). This

is a product of different types of compatibility, such as blood-type, size and tissue-type

compatibility. For all donors and patients, their individual blood-type and size are known,

and their mutual compatibility can be inferred from this. As such, we can incorporate this

information into a mechanism by treating this as a restriction on the set of feasible exchanges.

However, tissue-type compatibility is more difficult to ascertain. In particular, the patient

must not have antibodies to a donor’s human leukocyte antigens (HLA), thus requiring

testing specific to the patient and donor (Ashlagi and Roth, 2021). Thus to incorporate

this as a restriction on the feasible set requires that many patient-donor pairs be tested in

this fashion. This can be difficult in practice, and a simplifying assumption is to assume

that donors and patients from different pairs are tissue-type compatible (Roth et al., 2005).

On the other hand, patients and donors from the same pair are often already tested for

tissue-type compatibility in the first place. The reason we usually have this information is

that donors brought by a patient in a pair are usually those who want to donate specifically

to that patient. As such, they must have already checked compatibility prior to entering

the paired exchange mechanism. We assume for simplicity that the donor in all pairs is

tissue-type incompatible with their patient.
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Figure 2: Blood type compatibility.

3.4 Kidney Exchange

The standard models of kidney exchange primarily consider blood-type compatibility as the

main determinant of biological compatibility. A patient’s blood type is given by the presence

of two antigens, either A or B. If they are missing both antigens, we say they have blood

type O. Hence the set of possible blood types considered are A, B, AB, or O. A person

i can donate to another person j if whenever j is missing some antigen k ∈ {A,B}, then
so is i. For example, O donors are compatible with all patients as they are missing every

antigen, however O patients are only compatible with O donors. On the other hand, AB

donors can only donate to AB patients as they are missing no antigen, but as patients they

can receive from any donor. We depict the blood type compatibiltiy relation, where x ≤B y
for x, y ∈ B = {O,A,B,AB} if x can donate to y, in Figure 2.

Though an ideal kidney exchange is one where the patients and donors are blood-type

compatible with one another, there exists technology by which blood-type incompatible

donations can be performed. As Andersson and Kratz (2020) note, though the graft survival

rates for such a transplant are identical to compatible donations, the main issues with such

an approach are the financial cost of the immunosuppressant, longer waiting time prior to

transplantation, and the need for additional medical treatment. As such, it is reasonable to

assume that this is a less preferred mode of receiving a kidney than a compatible donation.

3.5 Liver Exchange

In liver exchange, a donor donates a portion of their liver, referred to as a lobe, rather

than their whole organ as in kidney exchange. Furthermore, liver exchange differs from

kidney exchange in two key ways: biological compatibility and modes of donation. The

main features of compatibility for liver donation is blood type and size compatibility. By the

latter we mean that a potential donor is compatible with a patient if the lobe they donate

is larger than what the patient requires. This is important as donors are also able to choose
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which lobe - the left or right - they donate, given that they differ in size. However, it is

known that the right lobe is more dangerous to donate in terms of mortality and morbidity

than the left lobe (see Footnote 2). Given this, we assume that agents will prefer donating

their left lobe over their right lobe. Similarly, kidney donation is also known to be safer on

both metrics than liver donation, whether left or right lobe. Thus we maintain the same

assumption on preferences when comparing kidney to liver donation10.

Though desensitization is possible, it is mainly done with donations from brain dead

patients (Egawa et al., 2023). We discount this as a possibility due to its limited current

implementation for living donation, but note that it might have scope for exploration in

future work.

4 Dual-Mode Exchanges

In this section, we study the setting where our exchange only has two modes, i.e. M =

{m1,m2}. This section provides a generalization of Ergin et al. (2020), which studies a

model that characterizes the existence of desirable mechanisms for liver exchange. In their

work, the two modes of interest corresponded to donating a left lobe as opposed to a right

lobe. It is assumed that objective medical risks associated with donation determines an

individuals preference ordering between the two modes. We consider a similar assumption

as their environment, and find a weaker condition that guarantee the existence of a desir-

able mechanism. We terms this condition weak acyclicity, which generalizes the notion of

acyclicity (Ergin et al., 2020). We further find that not only is it sufficient, but it is also a

necessary condition.

It is natural to ask whether our generalization was necessary in so far as practical ap-

plications are concerned. For example, is acyclitiy naturally satisfied in other dual-mode

environments? To showcase the importance of our generalization, we find practical environ-

ments - kidney exchange with ABO-desensitization, and with two risk-ordered donors - that

satisfy weak acyclicity but not acyclicity. We highlight our necessity result by showing the

the non-existence of a desirable mechanism in the setting of liver exchange with multiple

donors.

10 Note this is it not necessarily obviously true. Since the liver regrows whereas the kidney does not, it is
plausible to imagine that some agents might have the opposite preference based on the preference to “feel
whole”. We focus on preferences that reflect medical risk, though such alternative preferences may have a
foundation in practice. Understanding whether such preferences exist is an interesting empirical question
beyond the scope of this paper.
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4.1 Characterization

In characterizing the existence of desirable mechanisms, we begin with the same graph

construction as Ergin et al. (2020). Given GC and a set of agents A ⊆ I, construct the

following digraph G(A) = (A,E ′): let (i, j) ∈ E ′ if and only if

1. i can donate to j via m1, i.e. i→m1 j, and

2. j can donate to i only via m2, i.e. j ̸→m1 i and j →m2 i.

We refer to G(A) as the precedence digraph, as in Ergin et al. (2020). We say a pair of

agents i, j ∈ I is mutually compatible viam ∈M if i↔m j. We say that G(A) is weakly

acyclic if every cycle contains a pair of agents mutually compatible via m1. Furthermore, it

is acyclic if there are no cycles. This definition of acyclicity follows from Ergin et al. (2020).

Let TopOrder(G) return a topological order on G if it exists11.

Observation 1. G(I) is weakly acyclic if it is acyclic.

This follows from the fact that if there are no cycles, then it is vacuously true that all

cycles contain a pair mutually compatible via m1 donation. We now informally describe a

basic version of the “Preference Adaptive” (PA) algorithm studied in Ergin et al. (2020),

whose properties we aim to generalize: let Π = TopOrder(G(I)).

1. Compute a maximum matchM0 using some priority order viam1 and promise matched

agents a match via m1

2. For agents not matched but willing to donate via m2, add them to the set A.

3. Process through A in order given by Π:

(a) If k is Matchable (while preserving promises), then promise a match via m1

(b) Transform to m2 otherwise (if m2 is feasible)

4. Compute a maximum match via m2 while maintaining promises.

Note that for the algorithm as-is to be well-defined, we require that G(I) is acyclic. Ergin
et al. (2020) ensure this by showing that, in their setting of left and right lobe liver exchange,

the directed graph is always acyclic due to restrictions imposed by the compatibility graph.

11A topological order of a directed graph G with vertices V and edges E, if it exists, is a strict total order
▷ over V such that for all i, j ∈ V such that (i, j) ∈ E, then j ▷ i. It is known that such an order always
exists if and only if G is acyclic, however it may not be unique. We can break ties using an exogenous
priority order.
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However, we can observe that their proof leverages acyclicity of G(I), whereas, in general,

A is a subset of I. Thus the computation of the order is only required with respect to G(A),

not G(I). Hence instead consider a version of the PA algorithm where Π is computed as

TopOrder(G(A)) after A is constructed, which we refer to by the same name12. We leverage

this observation by showing that this change ensures the algorithm is well-defined whenever

G(I) is weakly-acyclic, in the sense that whenever the topological order is attempted to be

computed for any set A that could be generated, an order will necessarily exist.

Proposition 2. If G(I) is weakly acyclic, then the PA algorithm is well-defined.

Proof. See Appendix A.2.

With the key insight that the construction of the order is only necessary after agents

are matched mutually via m1, we can note that these are exactly the agents that will make

up any cycle in G(I) when it is weakly acyclic. Hence, if they are precluded, G(A) is

acyclic and thus admits a topological order. We can see the process of the initial mutual m1

matching step as “breaking” any cycles that might exist. Given this, we subsequently find

weak acyclicity to be a sufficient condition for this mechanism to be desirable:

Theorem 1 (Weak Acyclicity is Sufficient). If G(I) is weakly acyclic then the Preference

Adaptive algorithm of Ergin et al. (2020) is a desirable mechanism.

Proof. See Appendix A.4.

Since the mechanism is the same as that of Ergin et al. (2020), our proof primarily builds

on their analysis by extending their results to weak-core stability, and showing the other

properties hold under the weaker conditions. That is, the acyclicity of G(I) is not required
for their results, only the acyclicity of G(A).

We have shown that the condition of weak acyclicity is sufficient, but how about necessity?

The following results shows a converse to our sufficiency theorem.

Theorem 2 (Weak Acyclicity is Necessary). If G(I) is not weakly acyclic, then there is no

desirable mechanism.

Proof. See Appendix A.5.

For a graph to not be weakly acyclic, that means we must be able to find a cycle where

no pair of agents is m1 mutually compatible. The proof follows by contradiction, where

12Alternatively, one can observe that if instead of computing the topological order we used the condensation
of G(I), which always exists, then the partial order induced by this would be a strict total order when
restricted to A whenever G(I) is weakly acyclic.
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L1

L2 L3

Figure 3: Precedence digraph with the matching for the preference profileWWW in Example
1 highlighted.

we consider the environment that induces this cycle and assume that there does exists an

efficient matching from a strategy-proof mechanism. It is without loss to assume that the

cycle is simple: if there is a E ∈ E with cycle that is not simple, then we can find E ′ ∈ E

where there is a simple cycle by eliminating parallel paths in the original cycle13. If we

can show that there is no satisfactory mechanism in this case, then there is no desirable

mechanism for the considered class of problems. To show this, we leverage the fact that

pairs can match one of two ways: one agent matches via m1 and the other by m2, or both

via m2. The former case means that the pair of agents are adjacent in the cycle. Assuming

for contradiction that a desirable mechanism exists and thus can be applied to this setting,

we can use the constraints of efficiency and strategy-proofness to determine how agents could

be matched. We can observe that in any match, there is at least one agent that must donate

via the least preferred modality m2. Thus strategyproofness requires that misreporting, i.e.

saying that m2 is not individually rational, must mean that agent is not matched at all.

Efficiency requires that the agent who succeeds them in the cycle, who they could donate to

via m1 and receive via m2, must be matched. Repeatedly considering misreports by an agent

that donates via m2 allows us to identify a contradiction when we arrive at the final agent

who needs to be matched to ensure strategyproofness for the report of the penultimate agent,

but has no matching opportunities as every other agent finds m2 infeasible. The following

illustrates the impossibility result through an example with three agents.

Example 1 (An environment without a desirable mechanism). Consider the precedence

digraph in Figure 3 with the cycle L1 → L2 → L3 → L1, and assume there is a desirable

mechanism. Since this is a cycle of length 3, and no two agents that are adjacent can be

m1-mutually compatible, there are no m1-mutually compatible pairs in this cycle. Let XY Z

for X, Y,X ∈ {U,W} be a preference profile, where W means that m2 is IR (i.e. willing)

and U it is not (i.e. unwilling). Note that even if there were mutually compatible m2 pairs,

such a matching would never be efficient. Given this and the fact that at most two agents

13Recall that the definition of E ensures that we can eliminate agents from a E and it is still a member of
E.
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can be matched in a matching, we can denote a matching by (Li, Lj), where Li donates via

m1 and Lj donates via m1.

First consider the profile WWW . Without loss of generality, assume that (L1, L2) is the

matching given by the mechanism, where L1 donates by m1 and L2 donates by m2. Now

consider UUW , and observe that (L2, L3) is the only individually rational and efficient match.

For UWW , the possible individually rational, efficient matches are (L2, L3) and (L1, L2). The

former would contradict strategyproof-ness of the mechanism, as L1 can misreport from U

to W and be strictly better off. However the latter would also contradict strategyproof-ness,

as a misreport by L2 from W to U would give them a strictly better outcome. As no match

is feasible, this mechanism cannot be desirable. △

We have provided a general characterization of dual-mode settings that admit desirable

mechanisms. This approach builds on previous work, and an open question is how practically

necessary was our generalization. For example, is it the case that other applications of

interest already induce an acylic preference digraph? We illustrate the usefulness of our

results through different practical applications, two of which admit non-acyclic but weakly

acyclic environments, and one of which leverages our converse result to show the general

non-existence of a desirable mechanism for the given setting.

4.2 Incompatible Donation via ABO-Desensitization

The prototypical model of kidney donation considers agents that consist of patient-donor

pairs who are incompatible either due to tissue-type incompatibility or blood-type incom-

patibility. With the assumption that all patients are tissue-type compatible with all other

donors, the problem of maximizing the number of pairwise exchanges is the same as identi-

fying the maximum match in a compatibility graph. Because certain blood types are more

rare than others and thus have heterogeneous demand in the exchange market, certain agents

fare better than others due to their blood type. To overcome this barrier, the development

of ABO-desensitization has allowed patients to receive transplants from ABO-incompatible

donors. In the context of studying the properties of efficient matchings, this problem has

been studied by Andersson and Kratz (2020). We extend this line of work by showing how

this model satisfies weak-acyclicity strictly, and thus there exists a desirable mechanism.

The model is formally described as follows. Consider agents i ∈ I with type Xi − Yi ∈
B×B, where Xi is the blood type of the patient and Yi is the blood type of the donor. Their

ability to participate in an exchange with j ∈ I is by one of two modes. The first mode, m1

is the standard exchange mode, where i →m1 j if j’s donor is able to donate to i’s patient.

That is Xi ≤B Yj, where the blood type order ≤B is shown in Figure 2. The second mode is
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K1 K2

K3K4

(a)

I Patient Donor 1
K1 A A
K2 B A
K3 B B
K4 A B

(b) Observable characteristics

Figure 4: Isolated component, and example observable characteristics. Assume all agents in
the component have preferences K ≻ L ≻ ∅, that is they find all donations acceptable.

m2, which allows i’s patient to undergo desensitization in order to become compatible with

j’s donor. Note that by doing so, a patient is compatible with all donors. However, this

is less desirable than compatiblity via the non-desensitization mode, as noted in Andersson

and Kratz (2020).

The authors also observe a connection between the model of kidney donation with desen-

sitization and that of liver exchange as studied in Ergin et al. (2020). However the following

example highlights how the application of the same mechanism will not obviously preserve

the same properties. The approach of Ergin et al. (2020) utilizes the existence of a specific

acyclic directed graph, which is to draw an edge from i to j if i can interact via m1 but not

m2
14. Again we can consider the induced graph as in Ergin et al. (2020), where a directed

edge from i to j means that j’s donor is compatible with i, but j can only receive a donation

from i if they undergo desensitization. Alternatively, we can frame this as j is compatible

with i but i is not compatible with j, since by being desensitized they are able to receive a

donation from any blood type. The example in Figure 4 shows that the graph is not always

acyclic.

However, we can observe that once all donation possibilities via regular, that is without

desensitization, pairwise exchanges have been exhausted and we’ve removed those agents,

we would have removed K2 and K4. Thus the remaining graph is acyclic. In the following

result, we show that in general the preference digraph is weakly acyclic but not acyclic by

showing that only cycles similar to that in Figure 4 can exist.

Proposition 3. The digraph is always weakly acyclic, but not always acyclic.

Proof. See Appendix A.6.

As a result, by Theorem 1 we are able to apply the mechanism of Ergin et al. (2020) to

this setting, and thus achieve desirable outcomes.

14Note that since it is the patient that undergoes desensitization, we frame the modality as an interaction
rather than what they donate.
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K1 K2

K3K4

I Patient Donor 1 Donor 2
K1 A A B
K2 A B A
K3 B B O
K4 B A B

Figure 5: Isolated component, and example observable characteristics. Assume all agents in
the component have preferences K ≻ L ≻ ∅, that is they find all donations acceptable.

4.3 Exchange with Two Risk-Ordered Donors

In this section, we interpret the modes of interaction with another agent as having multiple

donors by which one can donate the corresponding organ. We consider the case where

different donors face different, objective medical risks. Hence they can be ranked in order

of the risk imposed on them by undergoing the surgery. We assume the agent’s preference

over which donor donates is reflected in this risk, and without loss we assume that the first

(listed) donor is preferred over the second donor in terms of who should donate. This model

is studied for kidney and liver exchange, and we show a possibility result with the former

and an impossibility result for the latter.

Kidney Exchange. We now consider the standard kidney exchange model, but allow for

an agent to list two donors rather than one. This occurs in practice. An agent is a triple

composed of a patient and two donors. We let an agent i’s type be given by Xi − Yi, Zi,

where Xi is the patient’s blood type, and Yi and Zi are the blood types of the first and

second donor respectively.

Our modes of donation are m1 and m2, where donation via ml from agent i to j means

that i’s l-th donor can donate to j. Hence a directed edge in our digraph i → j can be

interpreted as i’s first donor being compatible with j’s patient, but only j’s second donor is

compatible with i.

Figure 5 gives an example where there is a cycle, similar to the example in Figure 4. The

following result shows that although this digraph can contain a cycle, the digraph is always

weakly acyclic.

Proposition 4. The digraph is weakly acyclic but not acyclic.

Proof. See Appendix A.7.

The setting of objective preferences over donors is not without contention. In particular,
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L1 L2

L3L4

I Patient Donor 1 Donor 2
L1 A, 1 AB, 2 B, 1
L2 AB, 2 A, 2 A, 1
L3 A, 2 O, 1 O, 2
L4 B, 1 O, 1 O, 2

Figure 6: Counterexample for liver exchange with multiple donors.

there may be other considerations beyond medical risk, such as different donors having

different abilities to take time off work due to familial obligations. In such a case, this is not

reflected in observable medical risks.

Liver Exchange (Left-Lobe Only). Could we extend this to other organ exchanges,

such as liver exchange? The model is as follows. Let S = {1, ..., S} ⊆ R+ be a set of lobe

sizes15. An agent i’s type is Xi − Yi − Zi where Xi, Yi, Zi ∈ B × S refer to the blood and

size type of the patient, the first donor, and the second donor respectively. As before, we

assume the donors are ordered by risk. Let XB and XS refer to the blood type and size of

X. Y can donate to X if they are blood and size compatible:

1. XB ≤B Y B, and

2. XS ≤ Y S

The model of liver exchange is similar to that of kidney exchange except with the addition

of a size compatibility requirement. By choosing the size of all patients and donors in an

example to be identical, we can replicate any cycles in some kidney exchange with two donors

problem in this liver setting. However, the following result highlights that this setting is not

weakly acyclic.

Proposition 5. There is no desirable mechanism for liver exchange with two risk-ordered

donors.

Proof. Given the example in Figure 6, which provides a simple cycle, we can use Theorem 2

to conclude that there is no desirable mechanism.

Since this is a negative result in a restricted setting, that is of a known common preference

ordering that reflects objective risk, we then have an impossibility result in the general

environment with potentially differing preference orderings as well.

15This is assumed to be discrete as in Ergin et al. (2020). This is without loss of generality as there are
finitely many agents and their sizes are observable, hence S can be chosen given a set of agents.
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5 Multi-Modal Exchanges

In this section, we study how to go beyond dual-mode exchanges. Our main application is in

studying risk-ordered exchanges, where there is an ordered set of different organ exchanges,

each potentially with multiple modes. As before, we assume agents share a common prefer-

ence ordering consistent with the exchange ordering over these modes, which is motivated by

objective medical risks being identical across agents and the determinant of their preferences.

By placing restrictions on the compatibility structure through properties we call separability

and partition separability, we are able to model risk-ordered exchanges and identify desir-

able mechanisms. We conclude this subsection by formally describing the application of

integrating multiple organ exchanges.

5.1 Partition Separability

We say GC is partition separable if there exists a partition {Mk}Kk=1 ofM such that

1. Mk is contiguous, that is ifma,mb ∈Mk then for all c such that a ≤ c ≤ b,mc ∈Mk,

and

2. there exists {Ak}Kk=1 such that I = ⊎Kk=1Ak and for all k ∈ {1, . . . , K} and m ∈ Mk,

i→m j only if j ∈ Ak.

Furthermore, if |Mk| = 1 for all k ∈ {1, . . . , K}, then we say GC is separable.

Contiguity allows us to say, under a common preference assumption, that the partition

is contiguous with respect to this preference. The second condition states that in order to

donate via mode in some partition element k, the agent receiving via that mode must belong

to the associated partition of agents. Here, we have a connection between acyclicity and

partition separability:

Proposition 6. If GC is partition separable, then for k ̸= k′, G is acyclic with respect to

any mk ∈Mk and mk′ ∈Mk′.

Proof. See Appendix A.3.

This result finds that between two modes belonging to different partitions, the com-

patibility graph restricted to those modes ensures that every preference digraph is acyclic

(irrespective of which mode is m1 or m2).

For k ∈ {1, . . . , K}, fix ϕk a mechanism with respect to GC(Ak). We will now de-

fine a mechanism on the GC in terms of ϕk. Assume GC is partition separable, and let

{(Mk, Ak)}Kk=1 be described as above. Fix a preference profile ≻∈ RN , and let ψ be a

mechanism such that given ≻, it maps to the output of the following algorithm. Let M = ∅.
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1. Process through k ∈ {1, . . . , K}:

(a) Remove unwillingM1
k agents: for each agent i ∈ I

∅ ≻iM1
k =⇒ I ← I − {i}

(b) Consider Ḡk = GMk
C (I ∩ ∪l∈Ml

Al). Find a matching via ϕk:

M ←M ∪ ϕk(≻, Ḡk)

(c) Remove matched agents: I ← I − I(M).

(d) Process through l ∈ {1 +
∑k−1

p=1 |Mp|, . . . ,
∑k

p=1 |Mp|}:

i. Process through o ∈ {1 +
∑k

p=1 |Mp|, . . . , N}
A. Remove unwilling ml agents from Ao ∩ I: for each agent i ∈ Ao ∩ I

∅ ≻i ml =⇒ I ← I − {i}

B. Consider Ḡl,o = GC((Al ∪ Ao) ∩ I). Find a maximum bipartite match

between Al and Ao within Ḡl,o:

M ←M ∪ BipartiteMatch(Ḡl,o|Π, Al, Ao)

C. Remove matched agents: I ← I − I(M).

Intuitively, the mechanism operates as follows. First assume for simplicity that GC is

separable. We order agents by risk, treating those that require lower risk donations to have

higher priority. In the first stage, we compute an efficient match between all agents in the

highest priority class. In doing so, these agents get their best option, as they not only receive

the organ required but also donate via the least risky mode. We proceed to prioritize these

agents by considering an individually rational bipartite match between agents in the highest

priority class with those in the second highest priority class. From the perspective of agents

in the highest priority class, as all opportunities to match with another top priority class

agent have been exhausted (since the match in the first stage was efficient), then this is their

second best option. On the other hand, agents in the second highest priority class that are

matched get their best choice. As we repeat this procedure of bipartite matching until we

reach the lowest priority class, though we have prioritized the highest class, each class on the

other side of the bipartite matching get their best option. Thus they cannot be improved

upon. At this point, we have exhausted all feasible matching opportunities for the highest
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class, and we can repeat this procedure by replacing the highest with the second highest

class in order to exhaust their opportunities. In the case where GC is partition separable,

a similar idea applies, except when applying ϕk it is over multiple modes (inMk) and thus

we do not need to do bipartite matchings within this step.

As the mechanism matches agents via different modes in a way associated with the

common preference structure, this allows us to find a mechanism with ideal properties:

Theorem 3 (Partition Separability is Sufficient). Suppose GC is partition separable and for

each k ∈ {1, . . . , K}, with respect to GC(Ak), there exists ϕk that is individually rational.

1. If ϕk is Pareto efficient for each k, then ψ is Pareto efficient.

2. If ϕk is strategy-proof for each k, then ψ is strategy-proof.

3. If ϕk is weak-core stable for each k, then ψ is weak-core stable.

Proof. See Appendix A.8.

In the case where GC is separable, we can directly construct a mechanism:

Corollary 1. If GC is separable, then there exists a desirable mechanism.

Proof. For every exchange, we can observe that MaxMatch is efficient, strategy-proof and IR

as preferences are effectively over being matched or unmatched. Thus we can directly apply

Theorem 3 with ϕk = MaxMatch.

We state our result for each criteria separately to emphasize the following. Although

impossibility results abound, such as with liver exchange with multiple donors, we may be

willing forgo certain criteria in different parts of our integrated exchange. By separately spec-

ifying that each property can hold independently, it might be possible for the exchange to

satisfy certain properties like efficiency everywhere, but for example lose strategy-proofness

with respect to certain modes. How to choose which properties to give up can be deter-

mined by what is necessary in practice. For example, when certain organ groups may have

high urgency in getting a transplant due to the lack of alternatives16, we may expect that

strategizing is unlikely and thus choose to not require strategy-proofness.

Partition separability is not necessary. For example, consider the case where there are

only two partitions with a single mode each, which corresponds to a dual-mode environment.

Weak acyclicity is weaker than partition separability, which is stronger than acyclicity, hence

it is not necessary for the existence of desirable mechanism. In the subsequent section, we

identify a class of environments where this structure holds.

16For example, patients requiring a liver do not have an equivalent option to dialysis for kidney patients.
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Robustness to New Technologies. The utility of this formulation is in its robustness to

future medical developments. Given that new technologies in medicine are continuously being

developed, allowing for novel donation modalities, and thus more ways by which individuals

can receive or donate an organ, this poses an issue in paired exchange when risks differ across

modes. We have already identified how this occurs between exchanges, for example kidney

and liver, and within exchanges, such as with left and right lobe liver donation. Market

designers working in this domain must often attend to the specific structure of the problem,

such as biological compatibility, to create desirable matching mechanisms. By allowing

designers to focus on individual organ exchanges and, under the assumption of a common

risk-order, not on the integration of multiple organ exchanges, our mechanism can easily

develop alongside new technologies. An example of early stage research on new donation

modes includes intestine and pancreas transplants. Though currently not commonly done

due to the increased donor risks, should the technology become sufficiently safe for donors and

effective for patients, it is likely to be objectively riskier for donors than donating a kidney or

liver. As such, this would satisfy assumptions within our model. Future work should study

how to relax our risk-ordering assumption, which is less likely to hold as more modes are

introduced. The following section describes major applications where our separability and

partition separability structures are satisfied.

5.2 Application: Multiple Organ Exchanges

Where does this partition separability appear? In this section we show that this property

naturally emerges in the integration of exchanges for different organs. Let a family of organ

exchanges {Eα}α∈A for some ordered finite set A induce an exchange EA as follows:

1. An agent i belonging to Eα with type Ti has new type Ti − α in EA.

2. The set of modes in EA isMA = ∪α∈AMα.

3. If an agent i can donate to an agent j via m ∈Mα, then j ∈ Eα.

4. If m ∈Mα and m′ ∈Mα′ for α > α′, then m ≻ m′.

We interpret α as the unique organ required by a patient in exchange Eα. To understand

the third condition, we can note that in this context, a mode fromMα can be thought of as

a way of donating an organ α. As patients belong exactly to the exchange corresponding to

the organ they require, then this condition must always hold. The following straightforward

corollary identifies how this integrated exchange fits into the requirements of mechanisms we

have designed.

23



Proposition 7. Consider this family of organ exchange problems {Eα}α∈A, where A is a

finite ordered set. Let G be the compatibility graph induced by EA.

1. If each exchange Eα has a single mode for all α ∈ A, then G is separable.

2. If each exchange Eα has (potentially) multiple modes for all α ∈ A, then G is partition

separable.

Proof. Contiguity is satisfied by how EA is constructed. Let Ak to be given by the set of

agents in Eα, where α is the k-th element of A. Similarly defined Mk. Let I = ⊎Kk=1 for

K = |A|, and consider i, j ∈ I such that i→m j for m ∈ Mk for some k. By the definition

of EA, we have that j ∈ Ak. Thus G is partition separable. It is clear that if |Mk| = 1, we

have that G is separable.

This observation allows us to see that when families of organ exchange problems have a

common ordering, then our previous results highlight the existence of a desirable mechanism.

Illustrative Example. A simple environment we can study would be integrating kidney

and liver exchanges:

Example 2 (Kidney-Liver Exchange). An agent i’s type is given by Xi − Yi − Oi where

Xi, Yi ∈ B×S is the patient and donors blood-size type (as in the liver exchange model), and

Oi ∈ {K,L} refers to the organ required by the patient. There are two modes of donation,

m1 = K and m2 = L. Hence i →m1 j if Xi ≤B Xj and Oi = K, and i →m2 j if Xi ≤B Xj,

Yi ≤ Yj and Oi = L. △

Our mechanism has the following simple structure when applied to Example 2. The

following is an informal description:

1. Compute a maximummatch between all kidney agents (and remove all matched agents)

2. Compute a maximum bipartite match between kidney and liver agents (and remove

all matched agents)

3. Compute a maximum match between liver agents.

A motivation for integrating exchange pools is to improve the number of transplants and

reduce the risks taken by donors. We can characterize this by comparing our mechanism

with a baseline efficient matching mechanism for each exchange pool separately.

For o ∈ {K,L}, let bo be an efficient matching mechanism for agents in Io that uses

some priority order. Denote the joint mechanism by b, and let f denote our kidney-liver
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mechanism. We consider the following metrics. For R ∈ R, A ⊆ I, D ⊆ {K,L, ∅}, and ϕ a

mechanism, Iϕ : R → R and Nϕ : R → R are defined as

IA,Dϕ (R) = {i ∈ A|ϕm[R](i) ∈ D}

and NA,D
ϕ (R) = |IA,Dϕ (R)|. In words, IA,Dϕ (R) is the set of agents in A who are matched

via some mode m ∈ D. When A = I or D = {K,L}, we will suppress reference to these

variables. When comparing mechanisms, we consider the following criteria:

1. If for all R ∈ R, Nϕ(R) ≥ Nψ(R), then we say that ϕ weakly increases the number

of transplants over ψ.

2. If for all R ∈ R,

(a) NI
L,L

ϕ (R) ≤ NI
L,L

ψ (R) (less donors in the liver pool donate livers),

(b) NI
L,K

ϕ (R) ≥ NI
L,K

ψ (R) (more donors in the liver pool donate kidneys), and

(c) NI
K ,K

ϕ (R) ≥ NI
K ,K

ψ (R) (more donors in the kidney pool donate kidneys),

then we say that ϕ weakly reduces (unnecessary) donor risks over ψ.

To interpret the second comparison criteria, we say that unnecessary donor risks are reduced

when there are less liver donations and more kidney donations from pairs in the liver pool.

We use the phrase unnecessary as indicating that more liver pairs can receive a liver while

undergoing a safe donation. Furthermore, note that kidney patients only donate livers after

exhausting their kidney donation opportunities, hence any liver donation on their part is

necessary.

Proposition 8. Let f and b use the same priority order. Then f weakly increases the

number of transplants and reduces donor risks over b.

Proof. See Appendix A.9.

Clearly there are environments where our claim holds strictly. Further analysis on kidney-

liver exchanges, including impossibility results, can be found in the Supplementary Appendix

(See Appendix B).

Integrating Future Exchanges. One of the benefits of our mechanism is how adaptable

it is to new exchanges as they arise. The following example considers an environment where

living donor pancreas exchange has become more common. Though living pancreas donation

is relatively rare, it is becoming more common due to the lack of deceased pancreases. As
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such, it is plausible that there is a future where such an exchange is possible. Due to

the comparative difficulty of living pancreas donation, it is reasonable to assume that it

is the most risky of kidney, left, and right lobe donation. Using our results, the existence

of desirable mechanism in this environment with four modes can be readily established. In

particular, both kidney and pancreas exchange, as they are a single mode, have as a desirable

mechanism the maximum matching mechanism. Furthermore, Ergin et al. (2020) provide a

desirable algorithm for liver exchange. Hence we have the following straightforward result

that leverages Theorem 3:

Corollary 2. There is a desirable mechanism for a joint kidney, liver and pancreas exchange.

We can similarly consider other combinations including integrating kidney exchange with

two donors and a simultaneous kidney-liver transplant exchange (Ergin et al., 2017)17.

5.3 Simulations

In this section, we study in simulation the welfare impact of our proposal to integrate more

donation modes into paired donor exchange. Our main welfare metric of interest when

evaluating a matching is the number of pairs matched. More sophisticated mechanisms may

be able to account for other welfare-relevant criteria, however that is beyond the scope of

this work. We primarily focus on integrating kidney and liver markets, and for simplicity

focus on left-lobe only donation.

We consider aggregate population statistics that determine biological compatibility from

South Korean patients, detailed in Table 1, as in Ergin et al. (2020). For the same reason as

these authors, we consider this population due to the country being a world leader in living

liver transplantation. This allows us to illustrate the gains from integration in a realistic

setting.

To construct our simulated population, we randomly sample n kidney (patient-donor)

pairs and m liver pairs according to the liver-to-kidney patient ratio listed in Table 1. We

only consider patients that are incompatible with their donors, and their sexes are drawn

randomly from the listed probabilities. We also assume tissue-type compatibility between all

agents for simplicity. Given this, their blood types and relevant sizes are drawn randomly,

the latter of which is drawn from a normal distribution with the mean and standard deviation

as given. Finally, there is some independent probability p of an agent being willing to donate

a liver. For different choices of n18 and willingness probability p we give a heatmap of the

17Note that in this case, the exchange is not balanced in the sense that one side transplants more organs
than the other in the paired exchange. This is not done in practice, and has primarily been studied in
early-stage theoretical work (Feigenbaum, 2021).

18We use population sizes similar to Roth et al. (2007).
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Parameter Value

Blood Type Probabilities (ABO)

O: 0.37
A: 0.33
B: 0.21
AB: 0.09

Mean Sizes (cm)
Female (F): 157.40
Male (M): 170.70

Standard Deviation of Sizes (cm)
Female (F): 5.99
Male (M): 6.40

Sex Probabilities
Female (F): 0.3
Male (M): 0.7

Liver to Kidney Ratio 6274/32016 ≈ 0.196

Table 1: Configuration Parameters from Ergin et al. (2020).

relative increase (Figure 7) and absolute increase (Figure 8) of our integrated mechanism

over the baseline mechanism, i.e. maximum matches in each organ market separately. We

report the average values over 100 random simulations for these metrics. More details on

the results, such as the improvements for kidney and liver groups separately, can be found

in section A.10 of the Appendix. Simulation code is publicly available at https://github.

com/AnandS29/multi-modal.

aWe note some qualitative observations from our results. First note that, for an given

number of kidney pairs n, the absolute and relative increase in the total matches is increasing

in the willingness probability p. This is intuitive as when there are more agents who are

willing to donate a liver, then there should be more opportunities for matches to be executed.

However, this intuition doesn’t hold for any fixed p when varying n in the case of the relative

increase. This can be explained by noting that as the size of an exchange grows, the likelihood

of finding a compatible match increases. Thus more agents are matched in larger exchanges,

reducing any relative gains from integration.

6 Discussion

6.1 Larger Exchanges.

As we note in Section 3, though pairwise exchanges are commonly studied when considering

novel environments, exchanges with large-cycles are practiced. Gains may be diminishing

for sufficiently large exchanges (Roth et al., 2007), however it is plausible that improvements
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in metrics such as the number of transplants can outweigh the logistical cost of large cycles.

Furthermore, we study the most minimal setting, that is of pairwise exchange, hence small

increases are likely to realize in net gains. One of the main challenges with this approach

comes from a theoretical and algorithmic standpoint. When attempting to maximize the

size of a pairwise exchange, which corresponds to having as many transplants via pairwise

exchange as possible, it is very computationally tractable as it corresponds to finding a max-

imum matching in a graph19. However hardness results abound when requiring bounded

cycles of length greater than two, posing a challenge for this extension20. Approaches based

in approximation techniques have been studied (Abraham et al., 2007), however their inter-

action with strategic behavior, efficiency, and stability as we study is an understudied area

that holds promise for future work.

6.2 Preferences over Received Organs.

One may contend that in practice, pairs have preferences not only over what they donate,

but who donates to them. The main reason for this is likely to be that patients prefer to

receive from healthier donors. In general, it is reasonable to assume that all patients have the

same observable preference over the organ received. As our work aims to present a general

model for multi-modal exchanges, we simplify these aspects and view this as an extension of

models with dichotomous preferences like in Roth et al. (2005). Furthermore, in the context

of kidneys, it has been noted that the recommendation of surgeons is to be indifferent over

living donor kidneys (Roth et al., 2005; Yılmaz, 2011). As such, it is not clear to what

degree such preferences exist. We have motivated that different donation modes can have

different adverse consequences for donors, and thus we believe that our insights are valuable

in practice albeit not a complete model.

Should we nevertheless want to consider preferences over organs received, a useful as-

sumption in the literature is that such preferences are observable. For example, Ergin et al.

(2020) assume the existence of a “public information received-graft preference relation”,

where graft refers to the organ transplanted. The assumption that this can be observed is

motivated by objectivity of the quality of organs. However, formulating joint preferences

over organs received and modes of donation beyond lexicographic preference (as in Ergin

et al. (2020)) can make it challenging to construct desirable mechanisms, and thus we leave

this for consideration in future work.

19This is well-known to be possible in polynomial time.
20Holyer (1981) shows that finding a maximum cycle packing with a restriction to cycles of length 3 is

NP-hard, a classic notion from computer science that characterizes the difficulty of finding solutions. This
result applies to any length greater than 2 and strictly less than the number of nodes.
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6.3 Weak-Core Stability.

Why is weak-core stability an attractive property in our environment, even though it is not

commonly studied in the organ exchange literature? In practice, kidney paired exchange

is not completely centralized as it requires participation by hospitals and is geographically

separated. As a result, Ashlagi and Roth (2014) study a setting where there are strategic in-

centives for hospitals to misreport the set of available patients to the centralized mechanism.

This can occur because hospitals have an incentive to maximize the number of their own pa-

tients that receive a transplant, and thus they can choose to internally match pairs that are

“easier” to match, and use the centralized mechanism as a means to match their “harder”

to match patients. Given this, we can view hospitals as coalitions of patient-donor pairs

with the potential for deviating. The weak-core helps to mitigate these incentives, however

it is insufficient as a solution to this problem because it requires a strict improvement for all

agents. This suggests an avenue for further study on leveraging properties given by different

core notions as a solution.

6.4 Dual Equipoise and Asymmetric Risks.

An ethical concern with our model stems from two potential issues. One is referred to as dual

equipoise21, which maintains that risks from a donor donating must be balanced with the

gains that their patient indirectly receives from being able to participate in paired exchange.

As we allow for multiple ways of donating, there is a range of risks that vary with the donation

modality. The second issue lies in the difference in risks undertaken by different donors that

are paired together. For example, a donor may donate a kidney whereas another donates a

liver. The gains from donation are different, and so are the risks. These issues can appear in

the settings of Ergin et al. (2017) and Andersson and Kratz (2020) as well, and we find that

it is necessary to consider the benefits of such approaches while accounting for their moral

consequences. In some cases, integration has been practiced in the medical field (CMU,

2019). Nevertheless, it is not a common practice, and thus there is a larger conversation

to be had about such tradeoffs which are beyond the scope of this paper. Nevertheless, we

believe our findings will provide helpful information about the available possibilities.

7 Conclusion

In this work we consider a range of environments in paired organ exchange that share the

feature of incorporating new donation or transplantation technologies. We begin with a

21Ergin et al. (2020) provide a helpful discussion of this in the context of left and right-lobe liver donation.
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dual-mode environment - that is one with two technologies - and derive a necessary and

sufficient condition for such environments to admit an efficient, stable, and strategyproof

mechanism. We build on this by considering a set of exchange problems that model the

integration of multiple risk-ordered exchanges, and show how independently designed, de-

sirable mechanisms for each exchange can be themselves integrated together in a way that

preserves their properties. The design of such modular mechanisms is a novel approach to

scalable integration of different markets, and we see this as a promising direction for future

exploration. A simulation test of our mechanism in the simple, but practical, environment of

kidney-liver integration provides some foundation that such an approach can have positive

welfare effects in application. Future work should explore this from an empirical lens to

understand how incorporating richer preference information, along with exchange integra-

tion and new modes of donation, can improve donor participation, increase the number of

transplants, and mitigate donor risk.
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Ergin, Haluk, Tayfun Sönmez, and M Utku Ünver (2017), “Dual-donor organ exchange.”

Econometrica, 85(5), 1645–1671. 2, 6, 26, 31
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Yılmaz, Özgür (2011), “Kidney exchange: An egalitarian mechanism.” Journal of Economic

Theory, 146(2), 592–618. 30

A Appendix

A.1 Proof of Proposition 1

Proof. Consider a pairwise stable matching M ∈ M. Assume for contradiction that M is

not weak core stable. Then there is a set of agents U and a matching M ′ that is strictly

improving for all agents in U . Let i be an agent matched in M ′. Note that there must be

some agent matched since M was an IR matching and all agents in U were strictly improved

upon. Thus there are at least two agents i and j who are matched to each other in M ′.

Since i and j strictly preferred to be matched each other than their matching in M , they

form a blocking pair. This contradicts the pairwise stability of M . Thus, M is weak-core

stable.

A.2 Proof of Proposition 2

Proof. Assume G(I) is weakly acyclic. For contradiction, assume there is a cycle C in J̃K

(using the notation of Ergin et al. (2020)), and thus there does not exist a topological order.

Otherwise the operation TopOrder is well-defined and the algorithm of Ergin et al. (2020)

applies. Denote G′ as the graph. Since G′ is a subgraph of G(I), then all cycles in the former

are also cycles in the latter. Given that G(I) is weakly acyclic, then any cycle contains an

m1 mutually compatible pair. Hence there exists i, j ∈ C ∩ (J̃K), and thus i, j ̸∈ JK . This
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is a contradiction as, assuming i < j in the ΠL order, then i would not be transformed to

m2 since it would be matchable with j. Thus G′ is acyclic, and there exists a topological

order.

A.3 Proof of Proposition 6

Proof. Fix mk ∈Mk and mk′ ∈Mk′ for k ̸= k′. Consider the graph Gmi,mj
(I). Assume for

contradiction that there is a cycle such that C = (i0, . . . , iK−1). For any k ∈ N, ik mod K →
i(k+1) mod K implies, by separability, that ik mod K →mi

i(k+1) mod K and i(k+1) mod K →mj

ik mod K . By separability, i(k+1) mod K ∈ Ai and ik mod K ∈ Aj. Since this is true for arbitrary
k, then we have that for any k ∈ {0, ..., K − 1}, ik ∈ Ai ∩ Aj. This is a contradiction since

{An} is a partition of I, and thus Ai ∩ Aj = ∅. Thus there cannot exist a cycle.

A.4 Proof of Theorem 1

Proof. Let ϕ be the Preference Adaptive algorithm of Ergin et al. (2020). IR, strategyproof-

ness and efficiency directly follows from the proof in Ergin et al. (2020).

Recall that individual rationality and pairwise stability are a necessary and sufficient

condition for a matching to be weak-core stable. Assume for contradition that there is a

preference profile ≻ such that M = ϕ(≻) is not weak-core stable. Then there is a pair

i, j and m,m′ ∈ M such that i is compatible via m with j, j is compatible via m′ with i,

m ≻i MM(i), and m′ ≻j MM(j).

Note that we do not need to consider the case where either agent receives a match via

m1, that is MM(i) = m1 or MM(j) = m1, as there is no means by which either agent can

strictly improve their match.

Consider the case where MM(i) =MM(j) = ∅. Given that they were not matched in M ,

and the final step output a maximum matching, it must be that either i or j are unwilling

to be matched via m2. Without loss of generality, assume it is i. Then m2 ≺i ∅ = MM(i),

so it must be that m = m1. Since a maximum match via m1 bilaterally was found in the

first step, it must be that m′ = m2 and i ̸∈ Im1↔m1 . Thus both agent are in I − Im1↔m1 .

Since i → j, it must be that j is transformed first. When i is reached when processing the

topological order, it must be that in M , i is removed from the graph given that they are

unwilling and unmatched. However, i is matchable with j, and there cannot be any promises

that cannot be any promises that restrict this as both agents are unmatched at the end of

the algorithm. Hence i would be promised an exchange via m1, which is a contradiction.

Now consider the case where MM(i) = m2 and MM(j) = ∅. Since both agents strictly

improve their outcome, it must be that m = m1 and m′ ∈ {m1,m2}. If m′ = m1, then i
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and j are both matchable via m1 with each other while keeping all promises in the second

step. This is a contradiction as they would have both been promised a match via m1. Now

consider m′ = m2. Since i is not matched via m1, they must have not been promised a match

in the second step. Since j is unmatched and i ∈ I − Im1↔m1 , then j would be transformed

to an m2 agent, since they must be willing for m′ to be individually rational, and i would

be matchable with them via m1. This is a contradiction as i is not matched via m1. Note

that a symmetric argument applies for MM(j) = m2 and MM(i) = ∅.
Finally, consider the case whereMM(i) =MM(j) = m2. Then it must be that m = m′ =

m1. By the same logic in the previous paragraph, this is not possible. As in all cases it is

impossible for there to be a blocking pair, it cannot be that there is a blocking pair. Hence

the mechanism is pairwise stable, and consequently weak-core stable.

A.5 Proof of Theorem 2

Proof. Fix E ∈ E. Consider a simple cycle C = (i1, . . . , in). Note that it must be that

n > 2, since otherwise we have that i1 → i2 → i1 (and we assume no self-loops), which is a

contradiction as i1 can donate to i2 via m1 but the latter cannot donate to the former via m2.

Assume for contradiction that there is a desirable mechanism f . Note that C contains agents

of distinct types. Let I = C, and assume all agents find m2 feasible. By efficiency, there

are two agents that are matched. One case is that there are some agents ik and il matched

mutually via m2, or there are some two agents succesive in the cycle that are matched. If it

is the latter case, let this be i1 and i2. Furthermore, i1 donates via m1 and i2 donates via m2

since no agents are mutually compatible via m1, and if they were both matched via m2 there

would be a Pareto improvement by having one agent donate via m1 since by assumption,

that is possible. If i2 report that m2 is not IR, then i2 is unmatched in C ′ by strategy-

proofness. If i3 is unmatched, then there would be a Pareto improvement by matching i2

and i3. Thus i3 must be matched with i4. Similarly, if it is the case that there are two agents

ik and il matched via m2, first note that they are non-adjacent in the cycle. Without loss let

k = 1 and l > 2. By the same argument we require that if i1 reports to be unwilling, then

i2 is matched with some other agent (possibly adjacent or not). Inductively continuing this

process of progressive misreporting, we find that if in−1 misreports, then in must be matched

somehow. However as there are no m1 mutually-compatible matches, and i1 is not willing

to match via m2, then in must be matched via an m2 mutually-compatible match. However

all i1, . . . , in−1 do not find m2 individually rational. Hence to be efficient, in−1 and in must

be matched, with the former using m1 and the latter using m2. This contradicts what is

required by strategyproofness.
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A.6 Proof of Proposition 3

Proof. Note that if i → j, then j can donate to i but i can’t donate to j. For simplicity,

and to be in line with previous definition of the direction of the arrow, we flip the direction

of every arrow to mean that i can donate to j but j can’t donate to i. This preserves all

cycles. First we show that the above cycle is the only cycle in the graph. Consider some

cycle C = (i1, i2, ...). Since i2 cannot donate to i1 via m1, then it must be that i2’s donor A,

B or AB. Furthermore this must be true for every agent’s donor since this a cycle. Since

i1’s donor is A, B or AB, then consider the following cases: i1’s donor is

• A: i2 is A or AB

• B: i2 is B or AB

• AB: i2 is AB

If i2 is

• A: i3’s donor is B or AB

• B: i3’s donor is A or AB

• AB: not possible as any type can donate to AB

Hence we can conclude that no agent has type AB. Thus agents can only have type A or B,

since there are no donors that can donate to O agents. If there is an AB donor, there must

be an AB agent. Hence there are no AB donors either. Thus if i1 is

• A: i2’s donor is B

• B: i2’s donor is A

Consider i1 having patient-donor type A− A. Then i2 must be either A− B. i3 must then

be B − B, i4 is B − A, and i5 is A− A. Since all possible types are in this cycle, and their

successor is uniquely determined, this is the only cycle. Since there is a cycle, the graph

is not acyclic. To see that it is weakly acyclic, note that B − A and A − B are mutually

compatible. Hence all cycles in this graph have m1-mutually compatible.

A.7 Proof of Proposition 4

Proof. Consider some cycle C = (i1, i2, ...). Since i1 is not compatible with i2’s first donor,

then i2 must be of type A, B or O since if they were AB, then they would be compatible
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any donor. Since this is a cycle, then average agent is of type A, B or O. Furthermore,

given that i1’s first donor can donate to i2, then i1’s first donor must be of type A, B or

O. Again, this must be true for all agents. Since i2’s first donor is not compatible with i1,

then i2’s first donor cannot be O as they are compatible with all agents. This implies that

i1’s first donor cannot be O, hence i2 cannot be O either. Thus every patient and every first

donor is either A or B. Consider the patient-donor tuple A − A − X, where X is the the

type of the second donor. If corresponded to i1, then i2 must be A− B −X. Furthermore,

i3 will be B −B −X, i4 will be B −A−X, and i5 will be A−A−X. All cycles must have

this form as any agent will have a type in this cycle, and their successor will have the same

form. Clearly such a cycle exists (as given by the previous example), hence the digraph is

acyclic. To see that this is weakly acyclic, note that i2 and i4 are m1-mutually compatible

since they can donate to each other via their first donor. Hence all cycles in this graph have

m1-mutually compatible agents.

A.8 Proof of Theorem 3

Proof. Clearly the mechanism is individually rational.

We now prove Pareto efficiency. Assume ϕi are efficient and individually rational for all i.

Assume for contradiction that there is a matchingM ′ that Pareto dominates theM = ψ(≻).
Let i be such that M ′

M(i) = m′ ≻ m =MM(i). We proceed by strong induction on Imk↔ml

- the set of agents matched via an mk-ml swap for mk and ml in different elements of the

partition {Mi} -, IMk
- the agents in Ak matched under ϕk, and I∅←Mk

- the set of agents

in Ak that were unmatched in M -, to show that no i in any of these set can be strictly

improved upon. Consider the following order ▷:

M1, (M1
1,M1

>1), . . . , (M1
1,M−1

>1), (M2
1,M1

>1), . . . , (M−1
1 ,M1

>1), . . . ,

(M−1
1 ,M−1

>1), . . . ,Mk, (M1
k,M1

>k), . . . , (M−1
k ,M−1

>k), . . . ,M−1

where −1 represents the last element of a set. In other words, it is generated by the following

process: L = {}

• For k ∈ {1, . . . , |M|}:

– L← L ∪ {Mk}

– For l ∈ {i, . . . , |Mk|}

∗ For m ∈ ∪n>kMn:

· L← L ∪ {(Ml
k,m)}
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We interpret this as the type of match one can be part of, in order that our algorithm does

them in. We say that a, b ∈ L, a▷ b if a is after b in L.

We strongly induct on a ∈ L to show that there is no agent i that can be strictly improved

to match via a without making some agent worse off. Note that if i is ever strictly improved

from a match a, it must be to a match b such that a▷ b or a = b =Mk. To see why, assume

the latter case does not hold. For M , let i →m j and j →n i, and in M ′, i →m′ k and

k →n′ i. Note that m ∈Mr = a and m′ ∈Ms = b for s < r. Assume that i ∈ Al.

1. l = s: This means that i, k ∈ Al by partition separability. Observing the construction

of L, we have that the “internal” match forMl is done prior to the “external” matches

with less preferred modes. That isMl ▷ (m,n) for n ∈Mr for r > s. Hence a▷ b.

2. l < s: Note that this implies a cross partition match in M ′. From the construction of

L, we have that (m′, q1)▷ (m′, q2)▷ (m, q3)▷ (m, q4) for all q1 ≻ q2 and q3 ≻ q4 (such

that these are well-defined to be in L). Hence a▷ b.

3. l > s: This also implies a cross partition match in M ′. Observe that (q1, r1)▷ (q2, r2)

for all q1 ≻ q2 (such that this is well-defined to be in L), and (q, r)▷Mt for q ≻Mt.

Hence a▷ b.

The base case is a =M1. Consider i, j such that i →mi
j and j →mj

i in M . Assume

that i can be strictly improved in a new matchM ′, where i→m′
i
k and j →m′

j
l. By partition

separability, i, j, k, l ∈ A1. Note that all agents in A1 matched in M using a mode in M1

must be weakly improved inM ′, hence they must again be matched via a mode inM1 when

in M ′. Recall that that the match restricted to agents in A1 corresponds to those matched

using ϕ1. However the existence of M ′ implies that some agent (i) can be strictly improved

while all other agents in A1 are weakly improved. This contradicts the efficiency of ϕ1.

Fix some a ∈ L. Assume that the inductive hypothesis holds for all a′ such that a▷ a′.

We now show that it holds for a. Assume it does not, that is there is some agent i that can

be strictly improved to match from being matched via a in M ′ without making any other

agent worse off. Let M ′ be such a match, and let b be the type of match i participates

in within M ′. From our previous observation, either a = b = Mk for some k, or a ▷ b.

First assume the latter case. Because a▷ b means that the matches corresponding to b were

executed earlier than the matches corresponding to a, then i must have been unmatched at

the start of the step corresponding to b. Let j be the agent that i is matched with in M ′.

As j must be weakly improved from M in M ′, they similarly must be unmatched at the

start of the step corresponding to b. If b = (m,m′) then as BipartiteMatch match finds

a maximum (bipartite) match then they would have been matched if j was not matched
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at this step. Similarly, if b = Ml for some l then this would also hold by efficiency of

ϕl. Thus j must have been matched to some k at this step. Due to the efficiency of ϕl or

BipartiteMatch, we can find that there must be some agent originally matched at step b in

M who must be strictly improved (otherwise there is a Pareto improvement at step b). This

would contradict the inductive hypothesis, hence it must be that a = b =Mk for some k.

Thus there is some i who strictly improves to donating via m ∈Mk to m′ ∈Mk, in M and

M ′ respectively. However, again by efficiency of ϕk there must be some agent j′ that strictly

improves to m′′ ≻ Mk. Let c be the match they improve to, and note that by partition

separability and the fact that j′ was matched in b = Mk (hence j′ ∈ Ak), we have that

c = (n, n′) ◁ a = b. j′ must have been unmatched at the step correspond to c, and by a

similar argument to before we have that there is some j′′ that must be strictly improved (by

maximality/efficiency of BipartiteMatch). This contradicts the inductive hypothesis, and

as this exhausts the possible cases it must be that there is no agent matched via a that can

be strictly improved.

By our inductive argument, there is no agent matched via a ∈ L that can be strictly

improved in a Pareto improvement. If i were unmatched at the end of the algorithm but can

be strictly improved in a Pareto improvement, we can apply the same arguments as before

to show that some j originally matched via some a ∈ L would be strictly improved, and

thus find a contradiction. Hence we can conclude that no agent i can be strictly improved

without making another agents strictly worse off, which means that M is Pareto efficient.

To see strategyproofness, observe that any misreport outside of the agent’s partition

element to a more preferred mode does not increase any agent’s chance to be matched,

and any misreport to a less preferred more either does not change the outcome for the

agent, or causes them to be matched via a mode less preferred to being unmatched. Thus

we can conclude on strategyproofness of the mechanism with respect to these deviations.

Furthermore, misreports within the agent’s partition element does not affect the algorithm

until the the mechanism corresponding to that partition is used. Since the mechanism is

strategyproof, there is no profitable deviation. Hence the overall mechanism is strategyproof.

To see pairwise stability, and thus also weak-core stability by Proposition 1, note that if

two agents preferred to be matched to one another over their partner, then by virtue of the

algorithm, if they were in the same partition then this would contradict pairwise stability

of the corresponding mechanism, and if they were part of different partition elements then

they would have been bipartite matched earlier in the algorithm.
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A.9 Proofs of Proposition 8

Proof. Let IbK↔K and IbL↔L be the agents in IK and IL, respectively, that are matched by

bK and bL. First note that IK↔K has the same cardinality as IbK↔K as maximal matchings

are maximum matchings (Roth et al., 2005). Note that we can construct f (via choice of

priority order) such that a pair i in IbL↔L not matched in IL↔L is such that they must be

matched to a kidney patient, i.e. i ∈ IK↔L. Worst case, the matched pair of i in IbL↔L is

unmatched in f , but for every such case there is a kidney pair is who is matched in f but not

in the baseline. Hence there must be at least as many transplants in f then in the baselines.

Now we show the second condition. We have already shown that more kidney patients

donate kidneys in the previous paragraph. For a similar reason, less liver patients donate

livers. If this did not hold, then the matching in the baseline would not have been maximum.

Finally, since no liver patients donate kidneys in the baseline, the claim that more liver

patients donate kidneys holds trivially.

A.10 Simulation

In this section, we provide more comprehensive results on our simulation.
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Integrated Baseline Increase
Avg K Avg L Avg T Std T Avg K Avg L Avg T Std T Abs ∆ Rel ∆

p n

0.1 50 13.58 1.04 14.62 4.30 13.00 0.58 13.58 4.10 1.04 7.66
100 29.67 2.99 32.66 5.10 28.02 2.28 30.30 5.35 2.36 7.79
150 47.58 5.54 53.12 8.09 44.66 4.52 49.18 7.77 3.94 8.01
200 64.25 9.37 73.62 8.21 59.38 7.96 67.34 8.18 6.28 9.33
250 83.07 11.57 94.64 10.26 77.28 10.62 87.90 9.70 6.74 7.67

0.2 50 13.95 1.33 15.28 3.90 12.92 0.74 13.66 3.78 1.62 11.86
100 31.53 3.73 35.26 5.81 29.02 2.66 31.68 5.82 3.58 11.30
150 47.08 6.20 53.28 6.95 42.74 4.42 47.16 6.64 6.12 12.98
200 64.88 9.44 74.32 9.47 58.34 7.16 65.50 9.24 8.82 13.47
250 82.49 11.13 93.62 9.45 74.78 9.64 84.42 9.63 9.20 10.90

0.3 50 14.44 1.42 15.86 4.08 13.26 0.54 13.80 3.97 2.06 14.93
100 32.69 3.85 36.54 6.22 29.52 2.38 31.90 6.36 4.64 14.55
150 49.32 6.94 56.26 7.32 43.84 4.92 48.76 7.13 7.50 15.38
200 66.41 9.65 76.06 9.00 59.08 7.10 66.18 8.90 9.88 14.93
250 83.33 11.91 95.24 9.55 74.84 9.36 84.20 9.53 11.04 13.11

0.4 50 14.89 1.63 16.52 4.10 13.44 0.60 14.04 3.84 2.48 17.66
100 32.50 4.66 37.16 6.35 28.84 2.72 31.56 5.82 5.60 17.74
150 49.96 6.82 56.78 8.06 44.14 4.54 48.68 8.35 8.10 16.64
200 67.18 9.70 76.88 9.99 59.16 7.18 66.34 9.64 10.54 15.89
250 85.04 12.72 97.76 10.29 75.06 9.74 84.80 10.00 12.96 15.28

0.5 50 14.83 1.87 16.70 4.55 13.22 0.90 14.12 4.17 2.58 18.27
100 31.34 4.40 35.74 6.35 27.60 2.30 29.90 6.04 5.84 19.53
150 49.29 6.67 55.96 7.64 43.60 4.64 48.24 7.44 7.72 16.00
200 67.46 10.14 77.60 9.51 59.06 7.12 66.18 8.74 11.42 17.26
250 85.88 12.10 97.98 10.76 75.86 9.18 85.04 10.64 12.94 15.22

0.6 50 14.27 1.89 16.16 4.26 12.54 0.68 13.22 3.81 2.94 22.24
100 32.21 4.45 36.66 7.13 28.40 2.52 30.92 6.74 5.74 18.56
150 50.81 6.95 57.76 7.58 44.74 4.52 49.26 7.02 8.50 17.26
200 67.23 9.77 77.00 8.83 58.80 7.26 66.06 8.42 10.94 16.56
250 85.68 12.36 98.04 9.47 74.94 9.90 84.84 9.79 13.20 15.56

0.7 50 14.71 1.83 16.54 4.06 12.96 0.66 13.62 3.90 2.92 21.44
100 32.31 4.55 36.86 6.31 28.30 2.32 30.62 5.84 6.24 20.38
150 49.92 7.74 57.66 8.04 43.08 4.86 47.94 8.17 9.72 20.28
200 68.44 10.32 78.76 9.11 59.32 7.68 67.00 8.39 11.76 17.55
250 84.55 12.43 96.98 10.29 73.86 9.80 83.66 9.58 13.32 15.92

0.8 50 14.77 1.93 16.70 3.91 12.92 0.52 13.44 3.85 3.26 24.26
100 32.60 4.84 37.44 5.88 28.34 2.50 30.84 5.46 6.60 21.40
150 50.08 7.66 57.74 6.80 43.20 4.84 48.04 6.25 9.70 20.19
200 68.48 10.80 79.28 9.39 58.84 7.48 66.32 8.94 12.96 19.54
250 87.10 13.64 100.74 9.84 74.82 9.92 84.74 9.38 16.00 18.88

0.9 50 15.52 2.24 17.76 4.49 13.44 0.82 14.26 3.93 3.50 24.54
100 32.69 4.81 37.50 5.95 28.30 2.66 30.96 5.74 6.54 21.12
150 51.65 7.77 59.42 6.94 44.60 4.46 49.06 7.10 10.36 21.12
200 70.08 10.92 81.00 8.09 60.22 7.96 68.18 7.56 12.82 18.80
250 88.01 14.03 102.04 11.22 75.42 10.40 85.82 9.88 16.22 18.90

1.0 50 15.52 2.06 17.58 4.14 13.54 0.74 14.28 4.00 3.30 23.11
100 32.90 4.64 37.54 6.41 28.64 2.24 30.88 6.20 6.66 21.57
150 51.64 7.40 59.04 7.21 44.54 4.62 49.16 7.34 9.88 20.10
200 70.78 10.76 81.54 9.06 61.12 7.98 69.10 9.23 12.44 18.00
250 86.55 12.67 99.22 9.91 74.90 9.24 84.14 11.03 15.08 17.92

Table 2: Simulation results. p is the willingness probability; n is the number of kidney
patient-donor pairs; K,L, T is kidney, liver, and total number of matches; ∆ is difference
(e.g. Abs ∆ is the absolute increase from baseline to integrated).
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I Patient Donor
K1 AB, 1 A, 6
K2 A, 1 B, 1
K3 AB, 1 A, 1
K4 A, 1 O, 1
K5 B, 1 O, 1
K6 AB, 1 B, 1
K7 B, 1 AB, 1
K8 AB, 1 B, 1
K9 O, 1 A, 1
K10 O, 1 B, 1
L1 AB, 5 A, 3

(d) Example types

Figure 9: Isolated component, and example types. Assume all agents in the component have
preferences K ≻ L ≻ ∅, that is they find all donations acceptable. − indicates biological
feasibility, and ↔ indicates edges in a matching.

B Supplemental Appendix

In this section, we describe additional results on the integration of kidney and liver exchanges.

B.1 (Non-)Uniqueness

Is our mechanism unique? Consider the following mechanism g:

1. Identify components in G as in Figure 9d and match all agents according to Figure 9b

if individually rational, and Figure 9c otherwise.

2. Denote matched agents as IK↔L and remove them from them for I: I ← I − IK↔L.

3. Match I according to f .

Intuitively, this mechanism matches all subsets of agents that belong to the isolated

component and have the described structure, and for the remaining agents implements f .

Observe that the matches specified in Figure 9a is a maximum match that would arise in

our proposed mechanism f .

Theorem 4. g is a distinct mechanism from f that satisfies PE, IR, SP, and weak-core

stable.

Proof. Clearly g is individually rational. It is distinct from f by observing that, in the

isolated component, the kidney pairs would be matched by f instead of to the liver pairs
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as in g. Consider agents in the isolated component, if any. If it is individually rational for

both pairs of K-L pairs to be matched with one another, then g will match them. Otherwise,

they are not matched at this stage and they will be potentially matched under f . Observe

that as the L pairs get their best outcome, they have no incentive to misreport. If the K

pair misreports to say they are unwilling to match with a L pair, then they will remain

unmatched since they belong to an isolated component (hence are mutually compatible with

no other pair outside of the component) and their only potential match would be the other

K pair, which is already matched. Thus they would remain unmatched, which is strictly

worse for them according to their true preferences. Since f is IC, this whole mechanism is

IC. The mechanism is PE as the pairs in the isolated component who can be improved, that

is the K pairs, can only be improved by unmatching with the L pairs, who have no other

matching possibilities. Since f is PE, the whole mechanism is PE. To see pairwise stability,

observe that in the isolated component the only agents that K1 can’t form a blocking pair

with any agent Ki since they are all matched to some Kj and thus would not be strictly

improved upon.

B.2 Impossibility Results

In this section we state some impossibility results in various cases. We collate the results in

the following theorem, whose details are explained subsequently.

Theorem 5. Consider a pairwise mechanism that is strategyproof, Pareto efficient, individ-

ually rational, and pairwise stable. Then it cannot

1. hold for heterogeneous preferences,

2. maximize the number of transplants, or

3. satisfy neutrality

Heterogeneous Preferences and Pairwise Exchanges. Our solution thus far relies on

this assumption of a common risk ordering. A natural question is whether this assumption

was necessary. That is, can we find an efficient, IR and strategyproof mechanism when

preferences over transplants can be arbitrary? Our following result shows that this is not

possible:

Proposition 9. Let preferences be arbitrary and only allow for pairwise exchanges. Then

there is no efficient, IR and strategyproof mechanism.
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Figure 10: Example compatibility graph observable characteristics.

Proof. Consider Figure 10a. Let the pairs have the following preferences:

L ≻K1 K ≻K1 ∅

K ≻K2 L ≻K2 ∅

L ≻L1 K ≻L1 ∅

K ≻L2 L ≻L2 ∅

There are two possible matchings: {(K1, L1), (K2, L2)} or {(K1, K2), (L1, L2)}.
For the first matching, consider the case if L1 reports L ≻L1 ∅ ≻L1 K. To ensure

strategyproofness, we cannot allow our efficient (IR) matching under this new preference

profile to match L1 to L2. If we match K2 to L2, then the former would have an incentive

to report K ≻K2 ∅ ≻K2 L, which by efficiency and IR would result in K2 being matched to

K1. This would be a profitable deviation and thus not possible by strategyproofness. Hence

the only possible match is between K1 and K2. But this match is not efficient as L1 and L2

can also be matched.

For the second matching, consider the case if L2 reports K ≻L2 ∅ ≻L2 L. As before, we

cannot allow our mechanism to match K2 and L2 by strategyproofness. If K1 and K2 are

matched, then K1 reporting L ≻K1 ∅ ≻K1 K would be a profitable deviation as, by efficiency

and IR, K1 and L1 must be matched. Thus the only possible match would be between K1

and L1. However, again this match would not be efficient as K2 and L2 can also be matched.

Since neither matchings are possible, then no mechanism that satisfies the stated prop-

erties exists.

Note that the restriction to pairwise exchanges is important. In the given example, the

cycle (K1, L1, L2, K2) would result in all agents getting their preferred choice. We explore

in later sections how removing limits on cycle size can give positive results when there are

heterogeneous preferences.
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Figure 11: G

K1

K2

L1

(a) G

I Patient Donor
K1 (B, 2) (A, 3)
K2 (A, 2) (B, 3)
L1 (AB, 2) (O, 1)

(b) Example observable characteristics

Figure 12: Compatibility graph and example observable characteristics. Note that the pa-
tient of all pair is compatible with the donor of other pairs, but not with their own donor.

Transplant Maximization. One of our welfare criteria is transplant maximization. Is

it possible to have a mechanism that implements a maximal matching of the compatibility

graph, subject to individual rationality?

Proposition 10. There is no transplant maximal, strategyproof and IR mechanism, nor a

transplant maximal, pairwise stable and IR mechanism.

Proof. Observe that the transplant maximal matching given by {(K1, L1), (K2, L2)} is not

strategy proof or pairwise stable.

Equal Treatment of Exchange Pools. Implicitly, we are favoring kidney pairs over liver

pairs as a consequence of the risk ordering. This could be viewed unfavourably, and we may

want to consider a mechanism that treats either exchange pool equally. We say a mechanism

g satisfies neutrality if swapping organ labels (without changing preferences) does not change

the outcome. Note that f is not neutral:

Example 3. Consider the example in Figure 12, where the set of agents is I = {K1, K2, L1}
and the compatibility graph in Figure 12a is generated by the observable characteristics in

Figure 12b. Assume all donations are individually rational. Then f results in the following

matching: K1 andK2 matched via kidney donation. However if we swapped the organ labels,

then for some K ∈ {K1, K2}, the following is the matching: K1 and K are matched. △

We can see that there is no mechanism satisfying our desiderata while also being organ-

anonymous:
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L2
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(a) G

L′1

K ′2

K ′1

(b) G′

I Patient Donor
K1, L

′
1 (B, 2) (A, 2)

L1, K
′
1 (A, 2) (B, 2)

L2, K
′
2 (B, 2) (A, 2)

(c) Example observable char-
acteristics

Figure 13: Compatibility graphs and example observable characteristics. Note that the
patient of all pairs is not compatible with their own donor.

Proposition 11. There is no IC, IR, neutral and PE mechanism, and there is no IR,

neutral, PE and pairwise stable mechanism.

Proof. Consider the environments in Figure 13. An IR, PE and either IC or pairwise-stable

mechanism must match (K1, L1) in G and (K ′1, K
′
2) in G ′. Otherwise, pairs can misreport

their preferences to force a better match. Alternatively, there are blocking pairs. Note that

swapping labels maintains the same compatibility graph, but the outcomes are different.

Hence such a mechanism cannot be neutral.

48


	Introduction
	Related Literature

	Model
	Desiderata

	Background
	Simultaneous Operations.
	Small Exchanges.
	Tissue-Type Compatibility.
	Kidney Exchange
	Liver Exchange

	Dual-Mode Exchanges
	Characterization
	Incompatible Donation via ABO-Desensitization
	Exchange with Two Risk-Ordered Donors

	Multi-Modal Exchanges
	Partition Separability
	Application: Multiple Organ Exchanges
	Simulations

	Discussion
	Larger Exchanges.
	Preferences over Received Organs.
	Weak-Core Stability.
	Dual Equipoise and Asymmetric Risks.

	Conclusion
	Appendix
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 6
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Theorem 3
	Proofs of Proposition 8
	Simulation

	Supplemental Appendix
	(Non-)Uniqueness
	Impossibility Results


