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Abstract

This paper studies the problem of finding efficient, strategy-proof, and individ-

ually rational mechanism for kidney paired exchange under cycle-size restrictions.

We allow patients to have multiple donors, where their private information is their

strict preference over the donor used. We show that no desirable pairwise mechanism

exists, but under mild conditions constructively show that such a two-and-three-way

mechanism does exist. Our results leverage the structure of blood type compatibility

to overcome classic impossibility results due to cycle-size restrictions, and we provide

intuition to this end. When considering the number of transplants made, imposing

strategy-proofness while allowing multiple donors introduces a tradeoff when com-

pared to a complete information single-donor baseline. We show through simulation

using US population data that nearly always weak relative increases in the number

of transplants, and with sufficiently many patients with more than one donor this

can range from approximately 5 to 20%.

1 Introduction

One of the major successes of modern market design was the innovation of kidney paired

exchange (KPE). When suffering from kidney failure, the most effective medical treatment

is transplantation of a living kidney from a healthy donor. However, even when patients
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have a willing donor, they may not be able to donate due to biological compatibility

restrictions. KPE emerged as a solution to this problem by identifying sets of patient-

donor pairs where patients could exchange their willing donors so that all patients can

receive a compatible donation from a donor different than their own (Roth et al., 2004).

From the perspective of a patient, this requires them to identify potential donors of their

own first. In general, a patient may have multiple donors to choose from, and may in fact

have preferences over them. These preferences could reflect objective medical features such

as the risk of donation for different donors, or other subjective features such as personal

relationships, familial obligations, and more. For example, some donors may have a family

whereas others don’t, and in the case where they are the sole provider for their family

then it may be difficult to take time off from work due to post-operative care. Real-world

implementations of KPE mechanisms do allow agents to bring multiple donors, however

they tend to not solicit preference. A key concern with this is that it can lead to strategizing

on the part of patients. For example, patients may choose to not bring certain less preferred

donors to the mechanism before attempting to be matched using a preferred donor first.

From the perspective of a designer, this behaviour is not ideal. We would prefer patients

to bring all their available donors to the exchange rather than gradually over time so

that we can generate efficient outcomes. Achieving efficiency also requires patients to

be able to express preferences over their donors. This motivates our work in trying to

design an efficient, strategy-proof and individually rational mechanism when donors can

be strictly ranked. Of key importance in the practice of KPE is ensuring that small cycles

are used, as transplantation surgeries for KPE tend to be simultaneous. This paper aims

to bridge a gap in the current literature on market design for KPE, which generally does

not allow for general preferences over a patient’s set of donors. First we consider the case

where an exchange must be pairwise, finding an impossibility result in this environment.

Pairwise exchanges are commonly one of the first studied settings for new organ exchange

mechanisms with cycle constraints (Roth et al., 2005; Ergin et al., 2020, 2017), and this

impossibility result contrasts with positive results when agents are indifferent over all

their donors (Roth et al., 2005). In and of itself, this may not be surprising considering

the literature on house exchange with cycle constraints (Balbuzanov, 2020; Kamada and

Yasuda, 2025). However the results of the latter do not directly imply results in our

environment. In particular, when allowing for two-and-three cycle exchanges, we find a

positive result under mild assumptions. Throughout the paper, we will develop intuition

for how the structure of our problem is amenable to cycle constraints.
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A key metric by which KPE designers evaluate solutions on is the number of matches

made. Imposing strategyproofness will generally lead to the first-best outcome not being

implementable, whereas allowing multiple donors provide more opportunities to be matched

over a single-donor baseline. Through simulations on US population data for various

probabilities that a patient may have multiple donors, we compare of our mechanism

with this baseline that has perfect information. We generally find weak improvements in

terms of the relative increase in the number of matches made, and with moderate to high

probabilities this ranges from approximately 5 to 20%. We conclude with a discussion of

additional properties of our mechanism, and comments on the environment we study.

2 Model

Let B = {A,B,AB,O} be the set of blood types. A donor with blood type b can donate

to a patient with blood type b′ if b ≤B b′, where ≤B is a reflexive, transitive partial order1

given by the following:

1. O is a universal donor: O ≤B b for all b ∈ B

2. AB is a universal recipient: b ≤B AB for all b ∈ B

3. A and B are incompatible: A ̸≤B B and B ̸≤B A

4. AB cannot donate to other types: AB ̸≤B b for b ∈ B \ {AB}

5. O cannot receiver from other types: b ̸≤B O for b ∈ B \ {O}

An agent is a patient-donor tuple i ∈ I, where we denote τi = P − D1, D2, D3, D4, D5 ∈
T = ∪5n=1B × (B ∪ {∅})n to be the type of an agent. Let Di = {D1, D2, D3, D4, D5} ∩ B.
The type τi contains the following observable and private information:

1. P is the observable blood type of a patient

2. Di∪{∅} are blood types of donors or the outside option ∅, which is referring to using

no donor and thus not participating in any exchange. We observe the elements of Di

but not its order.

1The biological characterization is as follows. A and B are antigens, and your blood type specifies if
you have either antigen. For example, AB means you have both, whereas O means you have neither. A
donor can donate to a recipient if whenever a recipient is missing an antigen, then the donor is also missing
the antigen.
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3. The ordered set composed of Di∪{∅} is the private preference ordering ≻i on donors

and the outside option ∅. We assume that D1 ≻i D2 ≻i D3 ≻i D4 ≻i D5 for

Dk ∈ Di ∪ {∅}, though we may not be able to identify Dk

We can assume that patients list up to 4 donors with no repeated blood types2, any

donor dis-preferred to the outside option will nevertheless be listed, and patients may be

blood type compatible with their donors. We will find these assumptions to be without

loss in our mechanism. We will also use the notation IP−D1∗ to refer the set of agents with

blood type P for their patient, D1 for their most-preferred donor, and ∗ means that they

may have further donors. Furthermore, nP−D1∗ = |IP−D1∗|. Similarly we define IP−D1,D2∗

where D2 is the agent’s second favourite donor, and so forth. Using the same notation,

we succinctly write an agent’s type τi = P − D1∗ to emphasize that the D1 donor, their

most-preferred donor, is most relevant.

A paired exchange environment is E = (I, T ). Given such an environment, we use

the notation i→b j for i, j ∈ I and b ∈ B to mean that i donates to j using a b donor.

We only consider feasible donations, that is a donation i→b j such that

1. i has a donor with blood type b, i.e. b ∈ Di

2. b can donate to the patient in j, i.e. b ≤B Pj

An environment E induces an edge-labeled directed multi-graph we refer to as a com-

patibility graph: GE = (I, F ), where the set of labeled edges F ⊆ I × I × B is such

that (i, j, b) ∈ F if and only if i →b j. An exchange E = {(il1 → · · · → ilkl)}l∈L is a set of

vertex-disjoint cycles indexed by L, where a single cycle l ∈ L is il1 → · · · → ilkl made up

of distinct agents. The edge used is inferred based on the preferences of the agent from

which it is outgoing, whereby the ilk → ilk+1 using their most preferred donor b such that

ilk →b i
l
k+1. An n-exchange is an exchange E such that for all cycles l ∈ L, we have that

kl ≤ n. We refer to the set of exchanges by E, and the set of n-exchanges by En. In the

special case where n = 2, we refer to an exchange as a matching and define M = E2.

We use the notation E(i) to refer to the blood type of the donor used by i in E, and ∅
otherwise. Formally, E(i) = b if there exists j ∈ I such that (i, j, b) ∈ E, and ∅ otherwise.
Note that this is well-defined as exchanges are vertex disjoint, hence there is a unique donor

used and agent that is donated to.

2If a patient has a donor with repeated blood type, we will find that in our mechanism, the patient
need only bring their most preferred donor among those of the same blood type.
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K2 A B A
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(a) Environment E
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(b) GE with Donor 1
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(c) GE with Donor 2

Figure 1: An example environment with two donors.

Example 1 (Two Donor Example). Consider the environment E given by Figure 1a, with

compatibility graph for D1 and D2 edges given by Figures 1b and 1c respectively. The

set of agents can be written by I = {Ki}4i=1 where K1 = A − A,B, K2 = A − B,A,

K3 = B −B,O, and K4 = B − A,B. △

2.1 Mechanisms

Given an environment E where n = |I|, an exchange mechanism is ϕ : T n → E. ϕ

is a pairwise mechanism if ϕ[T n] ⊆ M, and a two-and-three-cycle mechanism if

ϕ[T n] ⊆ E3. Let Ē be the range of ϕ.

Consider some τ ∈ T n and E = ϕ[τ ]. We say that E is

1. individually rational (IR) if for all i ∈ I, E(i) ⪰i ∅.

2. Pareto efficient (PE) if there does not exists E ′ ∈ Ē such that for all j ∈ I,
E ′(j) ⪰j E(j), and there exists some i ∈ I such that E ′(i) ≻ E(i).

A mechanism ϕ is IR and PE if for every τ ∈ T n, E = ϕ[τ ] is IR and PE. A deviation for

agent i from τi = Pi−D1, . . . , D5 is τ
′
i = Pi−Dk1 , . . . , Dk5 , where {ki}5i=1 is a permutation

of {1, . . . , 5}. A mechanism is strategy-proof (SP) if for all τ ∈ T n, i ∈ I and deviations

τ ′i from τi, we have that ϕ[τ ](i) ⪰i ϕ[τ
′
i , τ−i](i). We say a mechanism is desirable if it is

PE, IR, and SP.

3 Pairwise Mechanisms

We begin with studying the most minimal setting of short cycle mechanisms - that is

pairwise exchange mechanisms. We ask whether there exists a desirable pairwise exchange
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mechanism for all environments. The following result shows that this does not hold.

Proposition 1. There exists an environment where there is no desirable pairwise exchange

mechanism.

The structure of this proof identifies a counter-example with three agents whose patients

and donors have A and O blood types only3. By leveraging all three criteria of desirability

- strategy-proofness, Pareto efficiency, and individual rationality - we can consider different

feasible matches at different type profiles and find a contradiction should all these criteria

simultaneously hold.

Importance of Compatibility Structure. An important feature of this problem which

has been ignored in past work is on incorporating the structure of biological compatibility.

In particular, Gilon et al. (2019) has previously studied kidney exchange with multiple

donors and the existence of pairwise mechanisms. By example, they aim to show the

impossibility of a desirable mechanism under a pairwise cycle constraint. However, as we

show below, their example is not possible under the standard blood type compatibility

model. In particular, the structure of blood type compatibility restricts the set of feasible

trades. Let G = (I, H) be a candidate compatibility digraph where H ⊆ I ×I. Note that
this compatibility graph does not specify the blood type of the donor used in a directed

edge. We say that G is rationalizable if there exists an environment E such that for

GE = (I, F ), we have that H = proj(F ) = {(i, j) ∈ I × I|∃b ∈ B, (i, j, b) ∈ F}. In

other words, there exists a choice of blood types for patients and donors that make these

matches as exactly the feasible set of matches.

Proposition 2. The set of feasible pairwise matches given in Figure 1 of Gilon et al.

(2019) is not rationalizable.4

This result is illustrative about the importance of accounting for the blood-type com-

patibility structure. Though they find an impossibility result conjectured to be in the same

setting as ours, it does not provide an underlying blood type structure to rationalize their

example. We will see in the subsequent section that accounting for blood type compatibil-

ity is essential for a positive result. In light of this, we can view their result as a comment

on the existence of desirable mechanisms when any trade is feasible and preferences over

the outside option can be arbitrary, which may be useful in other areas of interest.

3Given that O and A are among the two most common blood types, this is not an edge case example.
4Figure 1 of Gilon et al. (2019) was used to prove the analogous negative result in their Theorem 3.
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4 A Two-and-Three Cycle Mechanism

We now explore the existence of desirable mechanisms when cycles of size at most three

can be used. We consider various assumptions either for simplicity in the design of the

mechanism, or based in realistic assumptions on the distribution of agents.

Our first assumption simplifies the design of our mechanism by removing from consid-

eration an uncommon blood type.

Assumption 1. There are no patients with an AB blood type.

As AB donors can only donate to AB patients, this assumption implies that it is without

loss of generality that all agents only have non-AB donors, and have at most three donors.

We provide further discussion of this assumption in Section 6. This next assumption

is common in the literature, as stated in Roth et al. (2007), which is motivated by the

intuition that there are many O − A and O − B pairs due to blood-type incompatibility

between patient and donor5 and the high proportion of O blood types6.

Assumption 2 (Long-side of the Market). At least one of each type in O−b for b ∈ {A,B}
is unmatched in any feasible matching.

This final assumption is for simplicity of the mechanism, similar to that in Roth et al.

(2007) except we preclude the possibility of no b− b∗ agents:

Assumption 3. There are at least two O −O∗, B −B∗, and A− A∗.

Let MaxMatch(A) compute a maximum exchange of size at most 3 among all agents

A ⊆ I. Without loss of generality, we assume nA−B∗ ≥ nB−A∗, and our algorithm is

analogous in the case where nA−B∗ < nB−A∗. When we say that an agent i of type

X − Y Z∗ drop their Y donor, we transform their type to be X − Z∗ and eliminate their

donor Y from being considered. Let Π be a priority order over I, and Π|A be the same

order restricted to A ⊆ I. For a set of exchanges M and M ′, let the operation M ← M ′

mean to add M ′ to M , and to remove all agents in M ′ from I.
Consider the following mechanism: M = ∅

1. Match IB−B∗ amongst each other: M ← MaxMatch(IB−B∗).

5This leverages the idea that patients tend to enter the exchange after trying to use their donors but
failing due to compatibility.

6Approximately 48% in the US.
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2. Match IA−B∗ and IB−A∗: for i ∈ ΠIA−B∗ .

(a) If nB−A∗ ̸= 0, then choose some j ∈ IB−A∗ and do M ← {(i→ j)}.

(b) Else, exit this for loop.

3. Serial Dictator-like procedure with agents O−A∗ and O−B∗: for i ∈ ΠIO−A∗∪IO−B∗

(a) If nB−O∗ = 0 then for all j ∈ IA−B∗, j drops their B donor.

(b) If i ∈ IO−A∗ and

i. if nA−B∗ > 0 and nB−O∗ > 0, then for j ∈ maxΠA−B∗ IA−B∗ and k ∈ IB−O∗

do M ← {(i→ j → k)}.
ii. Else, if nA−O∗ > 0, then for k ∈ IA−O∗ do M ← {(i→ j)}.
iii. Else, if i ∈ IO−A,B∗ and nB−O∗ > 0, then for j ∈ IB−O∗ do M ← {(i→ j)}.

(c) If i ∈ IO−B∗ and

i. if nB−O∗ > 0, then for k ∈ IB−O∗ do M ← {(i→ j)}.
ii. Else, if i ∈ IO−B,A∗ and nA−O∗ > 0, then for j ∈ IA−O∗ do M ← {(i→ j)}.

4. For i ∈ IIO−A∗∪IO−B∗ , i drops their A and B donors (if any).

5. Match IO−O∗ amongst each other: M ← MaxMatch(IO−O∗).

6. Match IA−A∗ amongst each other: M ← MaxMatch(IA−A∗).

For intuition, we informally describe the algorithm as follows:

1. Match all B−B∗ agents amongst themselves, allowing them to have their best option.

2. As there are more A−B∗ than B−A∗, use a priority order to let A−B∗ be matched

with B − A∗. Both agents get their best option.

3. Let O − A∗ and O −B∗ take turns choosing agents to match with.

(a) O − A∗ prioritizes matching with A − B∗ and B − O∗, then A − O∗. Once

they’ve exhausted their opportunities to use A, if they have a B donor as their

second preferred donor, they match with B −O∗ if possible.

(b) O − B∗ prioritizes B − O∗, then A − O∗ if possible (and A is their second

preferred donor). There are no B − A∗ agents left for a three-way exchange

with an A−O∗.
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(c) A−B∗ keeps their top donor until they no longer have any opportunities to use

them.

4. O−A∗ and O−B∗ have no more matching opportunities with their A and B donor(s)

and thus drop them.

5. Match all O −O∗ and A− A∗ agents amongst themselves.

We now state the main properties of this mechanism:

Theorem 1. This mechanism is desirable.

To prove this result, the main challenge lies in showing Pareto efficiency. The proof

technique employs a contradiction argument, where we assume that there is an agent i0

who can be strictly improved from our matching M in some other Pareto dominating

matching M ′. We then construct a sequence of agents {in}n∈N in which we have that in

steals from in+1. By this we mean in is matched with some agent in M ′ who was originally

matched to in+1 in M . To maintain efficiency, in+1 must be re-matched in M ′ with an

agent they at least weakly prefer to whom they were matched to in M . By ensuring that

no agent in the sequence is stolen from twice, then no agent ever repeats. Furthermore, we

need to ensure that there is always an agent stolen from, rather than taking an unmatched

agent. This is simple in the case of pairwise exchanges, but more difficult when we consider

three-way exchanges. Given we are able to do this, the sequence must contain infinitely

many distinct agents, which is a contradiction to there being finitely many agents in our

environment. To achieve this result, we characterize the cases of i0 that could potentially

be improved, and construct a sequence for each case. For example, it may be that they

were not matched via their top donor, hence can be improved.

5 Simulations

We compare our mechanism with a random priority order to a baseline where agents only

bring one donor. We see this baseline as a setting where agents strategize and bring their

most preferred donor, and consider the outcome from the maximum 2-or-3 cycle exchange

mechanism7 under complete information of preferences. As most papers study a single

donor environment, or do not account for general donor preferences, we aim to highlight

the practicality of mechanisms that do account for these factors.

7Such a mechanism can be found in Roth et al. (2007).

9



Figure 2: (%) Relative Increase for n = 300 given different probabilities of the number
of donors. Averaged over 1000 random trials. The probability of 3 donors is given by
1− P(1 donor)− P(2 donors).

We randomly sample patients and donors from a common blood type distribution, and

consider different probabilities that an agent may have one, two, or three donors. We

only allow patients to have a top donor with the same blood type as them if they are

tissue-type incompatible. We use the same probabilities as in Roth et al. (2007), where

for each patient we sample a PRA level from {L,M,H} and then randomly sampling with

the relevant probabilities whether they are tissue-type compatible. Furthermore, we only

consider distributions of agents that satisfy our assumptions in Section 4. Figure 2 shows

the average relative increase in our mechanism compared to the baseline when there are 200

agents for different donor number probabilities. We average our results over 1000 random

trials.

Improvements over the baseline are dependent on the number of agents with more than

one donor. We can see in Figure 2 that there are approximately little, if any, losses from

imposing strategyproof-ness, and relative increases from approximately 5 to 20% when at

least 60% of agents have more than one available donor.

10



I P D1 D2

K1 A B A
K2 B A ∅
K3 A B ∅
(a) Environment E

K1

K2

K3

1 + ϵ
1 1

1

2

(b) GE with weights

K1

K2

K3

(c) Exchange E1

K1

K2

K3

(d) Exchange E2

Figure 3: An example environment with weights on the compatibility graph. Bold lines
refer to donations used in an exchange, and dotted lines refer to unreported donors.

6 Discussion

Incentives in the Status Quo. Current algorithms tend to not account for incentives.

Rather they usually take a set of reported donors, construct a compatibility graph with

weights on directed edges and cycles, and solve a maximum-weight cycle packing problem

with constraints on the size of cycles. Weights can be chosen based on features that

are donor-specific, such as match quality8. The following simple example highlights how

patients can have strategic incentives to misreport their set of feasible donors.

Example 2 (Weighted Exchange). Consider the environment E given by Figure 3a, with

weights on edges being shown in Figure 3b. Assume ϵ > 0 small. If all agents reported

their full set of feasible donors, the maximum-weight cycle packing is given by exchange

E1 = {(K1 → K2 → K3)}, as shown in Figure 3c. However, if K1 did not report their less

preferred donor, then the maximum-weight cycle packing is E2 = {(K1 → K2)} (shown in

Figure 3d). Hence K1 has incentive to deviate from truth-telling. △

In practice, individual patients tend to not have sufficient information to be able to

perfectly strategize. Nevertheless, people may still try to take “safe strategies” like only

reporting their top donor. If they are unmatched, then in a later iteration of the algorithm

they may bring both. As designers, we would prefer agents to bring all their donors in

order to achieve our objective as best as we can, while minimizing the cognitive burden

associated with strategizing.

If there were beliefs on the likelihood of an agent having a second donor, then alternative

choices of exchanges may be beneficial. For example, in the previous example, consider

ϵ > 0 sufficiently small. If we choose K2 ↔ K3 if K1 did not report their second donor, and

8Ashlagi and Roth (2021) describe an example of this by the “life years gained from [a] trans-plant”,
which may depend on features such as the donor’s age and health.
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K1 → K2 → K3 otherwise, then there may be higher expected value while being strategy-

proof. Though such a model is outside the scope of this paper, it provide some motivation

for considering strategy-proofness as a criteria in designing paired kidney exchanges.

How Many Donors Does One Need? We say that a mechanism is k-donor equiv-

alent for A ⊆ I if for any pair i ∈ A, their outcome in the mechanism is the same than if

they truncated their preference to their top k alternatives.9

Proposition 3. Assume that nA−B∗ ≥ nB−A∗. The mechanism is

1. 1-donor equivalent for IB−∗,

2. 2-donor equivalent for IA−∗, and

3. 3-donor equivalent for IO−∗.

Proof. The claim can be seen by observing the worst case outcomes throughout the algo-

rithm, noting that we proceed down an agent’s donor list.

This result is useful in that certain patients need not spend more effort than necessary

to find donors outside of their top k, where k is given by the above proposition.

TTC and Cycle Constraints. When there are no cycle constraints, variants of TTC

that account for indifferences can easily be applied to our problem by the following. Let

preferences over donation modes induce preferences over agents where agent i is strictly

preferred to agent j by agent k if k can donate to i using a donation mode that is strictly

better than any donation mode that k can use to donate to j. Thus, approaches that solve

house exchange problems when there are indifferences, such as the Top Trading Absorbing

Sets algorithm in Alcalde-Unzu and Molis (2011), can be used.

However, in our environment we require exchanges to be composed of two or three way

cycles, that is cycles in an exchange are of length at most three. It is known in the literature

that imposing cycle constraints makes it such that there is generally no mechanism that is

efficient, strategy-proof, and individually rational for house exchange Kamada and Yasuda

9Formally, for a given preference ≻i overM∪{∅}, denote the k-truncated preference ≻k
i such that

there exists ml ∈ M distinct where m1 ≻i · · · ≻i m
|M| and m1 ≻k

i · · · ≻k
i mk ≻k

i ∅ ≻k
i mk+1. Then a

mechanism ϕ is k-donor equivalent for A if for all preference profiles ≻ and for all agents i ∈ A, then
ϕ(≻) = ϕ(≻k

i ,≻−i).
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(2025). So why is it possible in this environment to find such a mechanism when there is

a cycle constraint? The following result gives some intuition by showing that if there is a

top trading cycle, then there is one that has length two (i.e. a 2-cycle):

Proposition 4. Consider a graph where all agents point to their favourite feasible agent.

If there is a cycle, then there must be a 2-cycle.

This result, and its proof, show that the structure of the compatibility relation and

donor preferences induces a certain structure on preferences over agents that is somewhat

compatible with the concept of a top trading cycle. Though this provides some intuition

for why it is possible, note however that we cannot use the TTC algorithm itself due

to indifferences, and some approaches that adapt TTC to allow for indifferences cannot

clearly be adapted to leverage this 2-cycle existence property. For example, when cycles

are executed in Alcalde-Unzu and Molis (2011), objects are only provisionally assigned and

thus may be reassigned in later parts of the algorithm. As such we can’t guarantee that

all objects will remain “close” to their original owner. Further work should explore how to

exploit such structure to show the existence of satisfactory mechanisms in general.

Number of blood types and cycle size. We might ask whether there is a connection

between the number of blood types present and the maximum cycle size. For example,

Roth et al. (2007) find that when there are n blood types that satisfy certain compatibility

conditions, cycles of size at most n are sufficient to maximize the number of transplants

amongst all exchanges with unbounded cycle size. Hence is it intuitive that we are able

to find an efficient mechanism considering we only use three blood types? This observa-

tion does not straightforwardly hold as we find a negative result in the case of pairwise

mechanism in Proposition 1 through a counter-example that only requires two blood types.

Assumption on AB patients. We now provide further justification for the assumption

to not include AB patients in the design of our mechanism. Firstly, in the United States,

AB blood types make up approximately 4% of the population. In general, it is a very rare

blood type. Secondly, as AB patients can receive from any blood type, we can note that

the probability that their top donor is also one they are tissue-type incompatible with is

approximately 20%10. Hence they are unlikely to enter a paired exchange mechanism, and

our assumption can be seen as implying that we do not consider a group of patients that

10This can be calculated using the probabilities in Roth et al. (2007).
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make up less than 1% of the population. As such, the gains from incorporating agents

with AB patients is likely to be minimal, and these patients are also those that tend to be

easy to match.

Preferences over Kidneys. Absent from our model are preferences over kidneys, which

is commonly allowed for in the literature. As we primarily focus on incentives associated

with donor preferences, we opt to exclude this aspect for simplicity and view this as an

extension of models with 0-1 preferences for kidney exchange (Roth et al., 2005). We

contend that this model still provides useful insights on the timing of matching agents

and how this relates to preferences and blood types. Furthermore, from the perspective

of surgeons, it has been noted in past work that they recommend indifference over living

organs due to the similarity in outcomes (Roth et al., 2005; Yılmaz, 2011). For example,

we can consider the age of a donor as a metric for health. Figure 4 in Terasaki et al.

(1995) shows similar graft survival rates over a three year period for donors under the age

of 50. When preferences are observable, as sometimes assumed in the literature due to

the preferences for healthier kidneys, we may be able to incorporate them using a similar

approach in Ergin et al. (2020).

7 Conclusion

In this work we consider the existence of desirable - that is Pareto efficient, individually

rational, and strategy-proof - mechanisms for paired kidney exchange with multiple donors

when cycles have size constraints and agents have preferences over which donor of theirs

is used. We find negative results in the case of pairwise mechanisms, and positive results

when allowing cycles of size at most three under reasonable assumptions. Our result is

surprising in light of known results on cycle constraints (Balbuzanov, 2020; Kamada and

Yasuda, 2025) and recent work on the same topic (Gilon et al., 2019), and our progress

emphasizes the importance of leveraging biological compatibility in these problems. By

further testing this mechanism in simulation using US population data, we can see rea-

sonable improvements over single-donor baselines that motivate the practical viability of

multi-donor mechanisms.
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A Proofs

A.1 Proof of Proposition 1

Proof. Consider the following agents, that is patients with donors (that may or may not

be feasible):

• {i, j, k} each with an O patient and {O,A} donors.

• l with an A patient and an O donor.

Observe that for any of {i, j, k} to match with each other, it must be through their O

donor, and to match with l can be through either donor. However to use their A donor,

they must match with l. We will define a match by the agents participating in it, with their

favourite donor used implicitly. For example (i, j) means that the donate to each other

via their O donors. We say a match is valid if it is efficient and IR given the preferences

considered.

Assume for contradiction that there is a desirable mechanism. Fix l’s preference as

O ≻ ∅. Now consider the following preference profile ≻1 for {i, j, k}:

i : A ≻ ∅ ≻ O

j : A ≻ ∅ ≻ O

k : A ≻ ∅ ≻ O

Without loss of generality, let the valid allocation in the desirable mechanism match (i, l)

together. Consider the following profile ≻2:

i : O ≻ A ≻ ∅

j : A ≻ ∅ ≻ O

k : A ≻ ∅ ≻ O

Since (i, j) and (i, k) are not IR, then to maintain strategy-proofness we must have (i, l)

match. Now consider the following ≻3:

i : O ≻ A ≻ ∅

j : A ≻ O ≻ ∅

k : A ≻ ∅ ≻ O
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The valid matches are {(i, j), (k, l)} and (j, l). However choosing the latter would violate

strategy-proofness as there would be a profitable deviation for j to misreport in preference

profile ≻3 into ≻2 where they go from being unmatched to being part of an individually

rational match. Hence let the match here be {(i, j), (k, l)}. Now consider the following ≻4:

i : O ≻ ∅ ≻ A

j : A ≻ O ≻ ∅

k : A ≻ ∅ ≻ O

Note that (j, l) is valid but not strategy-proof, as otherwise i will misreport from ≻4 to

≻3 and get from being unmatched to matched with j. Thus the only valid match is

{(i, j), (k, l)}. Now consider the following ≻5:

i : O ≻ ∅ ≻ A

j : A ≻ ∅ ≻ O

k : A ≻ ∅ ≻ O

Note that (j, l) is valid but again not strategy-proof, as otherwise j in ≻4 would misreport

in ≻5 to ≻4 and go from (i, j) to (j, l), which is a strictly better outcome for them. Hence

the only valid outcome is (k, l). Now consider the following ≻6:

i : O ≻ ∅ ≻ A

j : A ≻ ∅ ≻ O

k : A ≻ O ≻ ∅

Observe if (k, l) is not the valid match chosen here, then k in ≻6 will misreport to ≻5 to

get this match and thus strictly improve. Hence (k, l) is the outcome here. Now consider

the following ≻7:

i : O ≻ A ≻ ∅

j : A ≻ ∅ ≻ O

k : A ≻ O ≻ ∅

There are two valid outcomes here: {(i, k), (j, l)} and (k, l). Note that the former would
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not be strategy-proof, as otherwise we would have i misreport from ≻6 to ≻7 and thus go

from being unmatched to being matched in a valid outcome. However the latter would also

not be strategy-proof, as k in ≻2 would misreport to ≻7 and go from being unmatched to

being matched in a valid outcome. Thus there is no way of choosing a valid match. Hence

there is no desirable mechanism.

A.2 Proof of Proposition 2

Note that we adopt some of the notation in Gilon et al. (2019) for a more direct comparison.

Proof. Observe the following. First, no two Pi have type AB. If this were not the case,

for example P1 = P2 = AB, then every donor of P1 and P2 could donate to the other

patient. This contradicts with the set of feasible pairwise matches, which does not have

this property for any pair of patient-donor groups. This implies that d1i ̸= AB for all i. To

see this, note that for each d1i , they can donate to two other patients. If for contradiction we

had that for some i, d1i = AB, then we would have that there are two AB patients because

AB donors can only donate to AB patients. Furthermore, we have that for i ∈ {2, 3, 4},
Pi ̸= AB. To see this, consider P2 = AB for contradiction. We have that d12 − d24 is a

feasible pairwise exchange. As such, d12 can donate to P4, and since all donors can donate

to P2 = AB, then so can d14. However d
1
2 − d14 is not a feasible pairwise exchange, which is

a contradiction. We can apply the same argument to the case where P3 = AB or P4 = AB

(but note that it does not apply to P1). Finally, observe that Pi ̸= O for i ∈ {2, 3, 4}. If

this were not true, for example P2 = O, then we would have that d11 = d24 = O. Given that

O donors can donate to any agent, we would have that d11−d24 would be a feasible exchange.

This is a contradiction with the set of feasible exchanges given. The same argument applies

to P3 = O or P4 = O.

Using these facts, we proceed by considering various possible cases. First consider the

case that P1 = AB, thus any donor can donate to P1. This implies d1 ̸= O, which follows

because if d1 = O, then we would have that any exchange is feasible for P1 as P1 can

receive from any donor as they are AB and d11 can donate to any patient as they are

O. Recall that d11 ̸= AB, hence d11 ∈ {A,B}. Consider the case that d11 = A, and thus

P2 = P3 = P4 = A (because none of these patients can be AB). Hence we must have that

d22 ∈ {A,O} because d22 − d13 is feasible and P3 = A, which means d11 − d22 is feasible and

thus a contradiction. A similar proof applies when we instead assume that d1 = B. As we

have considered all the possible cases for choice of blood type of d1 given P1 = AB, and
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they all lead to contradictions, we cannot have that P1 = AB.

Now consider the case where P1 = O. As O patients can only receive from O donors,

then we have that d12 = d13 = d14 = O. This would imply that d13 − d14 is feasible, which

is a contradiction. Hence we must have that P1 ∈ {A,B}. Recall that we also have

P2 ∈ {A,B}.
Consider P1 = P2 = A. Thus we must have that d11, d

2
4 ∈ {O,A}. If d11 = O, then this

would imply that d11 − d24 is feasible, which is a contradiction. If d11 = A, then P4 = A

(as it cannot be AB). Furthermore, if d24 can donate to P2 = A, then it can also donate

to P1 = A. And since d11 can donate to P4, we have that d11 − d24 is feasible, which is a

contradiction. The same idea applies to P1 = P2 = B.

Now consider P1 = A and P2 = B (the same idea applies for P1 = B and P2 = A). Note

that d11, d
2
4 ∈ {B,O}, because both donors can donate to P2 = B. If d11 = d24 = O, then we

would have d11 − d24 is feasible, which is a contradiction. If d11 = B and d24 = O, then we

have that d11 − d24 is feasible, which is also a contradiction. Consider d11 = O and d24 = B.

Because d11 − d14 is feasible and P1 = A, it must be that d14 ∈ {O,A}. If d14 = O, then

d14−d12 would be feasible, which a contradiction. Hence it must be that d14 = A. Given that

d11 = O can donate to P2, but d
2
2 cannot donate to P1 = A because d11 − d22 is not feasible,

it must be that d22 ∈ {B,AB}. First consider d22 = B. In this case, note that P4 ∈ {O,A}
because d24 is compatible with P2 but d22 = B is not compatible with P4 as d22 − d24 is not

feasible. If P4 = O, then we must have that d12 = O as d12 − d24 is feasible. But this is a

contradiction because we would have that d13 − d12 is feasible. If P4 = A, then this would

imply that d12 = {A,O}. It must be that d12 = A, as if d12 = O then we would have that

d12 − d13 is feasible, which is a contradiction. Given this, we must have that P3 ∈ {B,O}
so that d12 − d13 is not feasible (as d12 = A). By our previous observation, it cannot be that

P3 = O. Hence if P3 = B, we would get a contradiction as d23−d24 would be feasible because

d23 is compatible with P4 given the set of feasible exchanges, and d24 = B and P3 = B by

assumption. Thus we cannot have that d22 = B, so it must be that d22 = AB. This would

imply that P3 = AB, which is a contradiction with out observation that P2, P3, P4 ̸= AB.

Now we consider the final case, that is d11 = d24 = B. This implies that P4 ∈ {B,O} as
d11 − d14 is feasible and d11 = B by assumption. If P4 = B, then d23 ∈ {B,O} as d32 − d14 is

feasible and these are the only feasible blood types that can donate to P4 = B. In either

case, we would have that d22−d32 is feasible because P2 = B, which is a contradiction. Thus

it must be that P4 = O. However this contradicts our earlier observation that P4 ̸= O. As

such it cannot be that P1 = A and P2 = B (or by an analogous argument that P1 = B
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and P2 = A). As we have gone through all cases, and shown that there is no choice of

blood types that are consistent with this set of feasible exchanges, then this set is not

rationalizable.

A.3 Proof of Theorem 1

Individual rationality is clear. We focus on showing efficiency and strategy-proofness.

A.3.1 Strategy-proof

First we can observe that A − O∗, B − O∗, b − b∗ for b ∈ {O,A,B}, and B − A∗ all

get their top choice and have no incentive to deviate. Furthermore, all A − ∗ agents are

guaranteed their top two IR choices. Hence the only agents that do not get their top donor

are A − B,A∗ matched via A; A − B,O∗ matched via O; and A − B unmatched. If any

other donor is put ahead of B, then A will be guaranteed to be matched by them. Hence

there is no incentive to deviate as they will not be able to improve to their top donor

instead of their second donor. Finally, O − ∗ can be seen to have no incentive to deviate

by the Serial Dictator procedure, which uses a fixed priority order. Furthermore, all O−∗
agents take the best option available to them when it is their turn.

A.3.2 Efficiency

We will construct a sequence, i0 → i1 → i2 → . . . , where in → in+1 means that in is

matched with in+1’s partner in M ′, and in+1 has a new partner in M ′. We see this as in

stealing in+1’s partner in M and displacing them. For three cycles, we specify a certain

agent as being stolen, and a certain agent who was stolen from. We refer to the other

agents as being free, and we should that free agents are never stolen. Note that i0 steals

first, in the sense that the agent they are pointing to can no longer use that agent. Hence

this kicks off a chain of stealing from different agents where no two agents steal from the

same agent. Thus there are infinitely many agents (a contradiction).

We assume without loss that in M ′, the following cycles don’t happen: A − B ↔
B − O, B − A ↔ A − O, or any three cycle with b − b. We justify this as follows. For

A−B ↔ B −O, since there is a surplus of O −A we can Pareto improve M ′ to M ′′ that

implements O − A → A − B → B − O. Similarly for B − A ↔ A − O, which can be

improved to O − B → B − A → A − O. Consider a three cycle with b − b of the form

X1 −X2 → b− b→ Y1 − Y2. Due to transitivity of the blood type compatibility relation,
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X2 can donate to Y1. Thus we can match X1 −X2 ↔ Y1 − Y2 and match b− b with other

b− b in a two or three cycle as we assume there are at least 2 such agents.

These agents are the ones that can be improved in some match M :

• A−B, (A)∗; A−B, (O)∗; A−B

• O − A, (B)∗; O − A, (O)∗; O − A,B, (O)

• O −B, (A)∗; O −B, (O)∗; O −B,A, (O)

• O − ∗

where (b) means that the b donor was used in M . if there is no (b), then they were

unmatched. If there is no ∗, then they have no more donors other than those listed. If

there is a ∗, then they may have more donors. [b] refers to the donor used in M ′.

Consider the following cases:

• i0 = A− [B], (A)∗. Note that they must have been matched in M via A− A hence

we can let A− A be a free agent.

• i0 = A−[B], (O)∗. Note that they must have been matched in M via O−A↔ A−O,

O −B,A↔ A−O, hence we can let O − A or O −B,A be a free agent.

• i0 = A− [(B)]

• i0 = O− [B]∗, O−A, [B]∗, O− [A]∗, O−B, [A]∗ (O−∗ was unmatched and improved

to B or A)

• i0 = O − [A], (O);O − [B], (O);O − [A], B, (O);O − [B], A, (O);O −A, [B], (O);O −
B, [A], (O) (O − ∗ was matched with O −O and improved to A or B, so there is an

O − ∗O∗ free agent)

1. If in = A− [B]∗, O − [B]∗, O − A, [B]∗ steals

(a) B − (A)∗, then in+1 = A− [B]∗ (no free agents)

(b) B − (O)∗, then in+1 = A − [B]∗, O − [B]∗, O − A, [B]∗, O − [A], (B)∗ (with

O − (A)∗ potentially a free agent)

2. If in = O − [A]∗, O −B, [A]∗ steal

(a) A− (O)∗, then in+1 = O − [(A)]∗, O −B, [(A)]∗, O − [B], (A)∗ (no free agents)
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(b) B − (O)∗, then in+1 = A − [B]∗, O − [B]∗, O − A, [B]∗, O − [A], (B)∗ (with

O − (A)∗ potentially a free agent)

3. No free agent or unmatched (in M) agent is ever stolen, and all in+1 cannot be

matched with in in M ′.

Now consider the following case:

• i0 = O− [A], (B)∗ (so B − (O)∗ is a free agent). Note that there are no O−B, (A)∗
in such a case (that is O − B,A ↔ A − O), as by SD procedure we must have had

the A− (O)∗ run out as O−B prioritizes B − (O)∗. Furthermore, if O−A,B∗ had
to directly match with B − (O)∗ then there must not be an A − B∗ unmatched as

O − A∗ prioritizes O − A∗ → A−B∗ → B −O∗.

1. If in = O − [A]∗, O −B, [A]∗ steal

(a) A− (O)∗, then in+1 = O − [(A)]∗, O −B, [(A)]∗ (no free agents)

(b) A− (B)∗, then in+1 = O − [A]∗ (and B − (O)∗ is a free agent)

(c) There are no A−B unmatched by the previous observation.

2. No free agent or unmatched (in M) agent is ever stolen, no type of agent stolen is

ever unmatched in the first place, and all in+1 cannot be matched with by in in M ′

Now consider the following case:

• i0 = O− [B], (A)∗ (so A− (O)∗ is a free agent). Note that there are no O−A, (B)∗,
as either they are before i0 in SD and would have taken A− (O)∗, or were after serial
dictator in which case i0 would have taken B − (O)∗.

1. If in = O − [B]∗ steal

(a) B − (O)∗, so in+1 = O − [(B)]∗, A− [(B)]∗ (O − (A)∗ free agent). We use the

fact that there are no O − A, (B) here.

(b) B − (A)∗, so in+1 = A− [B]∗ (no free agent)

2. If in = A− [B]∗ steal

(a) B − (A)∗, so in+1 = A− [(B)]∗ (no free agent)
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(b) B − (O)∗, so in+1 = O − [(B)]∗, A− [(B)]∗ (O − (A)∗ free agent). We use the

fact that there are no O − A, (B) here.

3. No free agent or unmatched (in M) agent is ever stolen, no type of agent stolen is

ever unmatched in the first place, and all in+1 cannot be matched with in in M ′

A.4 Proof of Proposition 4

Proof. First consider the case where there is an AB patient. If the AB patient has a donor

compatible with some other patient, then they must be pointing to someone. Since anyone

can donate to AB patients, then everyone is pointing to AB. Hence there is a two-cycle.

If the AB patient has no donor that can feasibly donate to another patient, then they are

not part of any cycle.

Now consider the case where there is no AB patient. This means that any cycle cannot

utilize AB donors, as AB donors can only donate to AB. Hence assume that there are no

AB donors. Assume there is no two cycle but there is a cycle of length n.

First we will show that there cannot be an O donor as an patient’s top choice, nor an

O patient, for any agent in a cycle. Assume for contradiction that there is an agent i1

that points with an O donor in the cycle. Hence they point to every agent. Since in → i1,

hence i1 ↔ in. Since there are no O donors, and only O donors can donate to O patients,

then there can be no O patients.

We proceed by assuming that there are only A and B donors and patients, and consider

different cases based on the number of agents n in the cycle.

If there are only two agents, and thus all these agents are in the cycle, then this is a

contradiction.

If there are at least five agents in the cycle, denoted i1 → i2 → i3 → ..., then observe

we can’t have the any three consecutive agents have the same type. For example, if

i1, i2, i3 ∈ IA, then i2 → i1 and thus there is a two cycle, which is a contradiction.

First consider the case where i1, i2 ∈ IA. This implies that i3 ∈ IB. If the cycle is of

length three, then we are done. If i3 → i4 ∈ IA, then i3 → i2, which introduces a two

cycle. Hence i4 ∈ IB. If the cycle is of length four, then we are done. If i4 → i5 ∈ IB, then
i4 → i3 ∈ IB, another contradiction. If i4 → i5 ∈ IA, then i4 → i2 ∈ IA and i2 → i4 ∈ IB
since i2 → i3 ∈ IB. This final contradiction shows that i1, i2 cannot both be in IA. A

similar argument holds for i1, i2 ∈ IB.
Now consider the case where i1 ∈ IA and i2 ∈ IB. If there are only three or four agents,
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then we are done (assuming in the latter case there is no three consecutive agents of the

same type). Assume there are at least five agents: i1 → i2 → i3 → i4 → i5. If i3 ∈ IA and

i4 ∈ IB, then i3 → i2, giving a contradiction. By the previous argument on consecutive

types, it cannot be that i3, i4 ∈ IB. If i3, i4 ∈ IA, then i5 ∈ IB, otherwise there will be

three agents of consecutive types. Then i4 → i2 and i2 → i4 gives a two cycle and thus

a contradiction. Now consider i3 ∈ IB and i4 ∈ IA, then i1 → i3 and i3 → i1, another

contradiction. A similar argument applies for i1 ∈ IB and i2 ∈ IA.
If there are exactly three agents, it is clear that the cycles must be of the following

form: A → B → A, or B → A → B. Note that, for example, the latter is equivalent

to A → B → B. However then it must be that there is a two-cycle given by A ↔ B

in both cases, thus this is not possible. If there are four agents, since there can be no

three consective agents, it must be that cycles are either of the form: A → B → A → B,

or A → B → B → A. However neither are possible as there is a two cycle, which is a

contradiction.
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