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Abstract

When do cheap talk games admit informative equilibria? In a binary-action

model, we show that the alignment between Sender and Receiver preferences deter-

mines the existence of informative equilibria, or lack thereof. We provide a char-

acterization of the equilibrium payoff set. When moving beyond the binary-action

setting, we find that the preference alignment no longer captures the existence of an

informative equilibrium in general. We demonstrate that even if the preferences are

perfectly misaligned, there may exist an informative equilibrium. With a restriction

to binary states, we find that such preferences do not allow the Receiver to improve

their payoffs over a babbling equilibrium, yet this intuitive prediction does not hold

beyond the binary-state assumption. We identify a different set of alignment condi-

tions between preferences such that Bayesian persuasion realizes payoffs the same as,

or different to, some equilibrium in cheap talk.
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1 Introduction

Communication is essential in economic, business, and social activities. Sellers may want

to convey information about their new product to buyers. An entrepreneur may want to

explain the nature of their business to investors. A politician may want to explain her

political view to the public. When can such communication be informative?

The seminal work by Crawford and Sobel (1982) studies a setting in which one agent,

the Sender, knows the state of the world and talks to the other agent, the Receiver, who

then takes an action that determines the welfare of the two agents. They demonstrate

that informative communication can be an equilibrium outcome if and only if the bias,

which measures the two agents’ preference misalignment, is sufficiently small. This insight

was obtained under a rather specific setting, where the optimal action by the two agents

move in the same direction as the state of the world changes. Such a model would apply

to various scenarios, but there are real-world settings that the model may not be able to

capture.

To fix ideas, consider the following seller-buyer relationship. The seller has multiple

products in her store. The buyer comes to the store, and he is particularly interested in two

products: an old product that he knows well, and a new product that he does not know as

much. Depending on the new product’s quality or its match to his taste, the buyer may

like to buy the new product or the old product. Likewise, depending on the supply cost

of the new product, the seller may like to sell the new product or the old product. One

could “order” the states in terms of the buyer’s willingness to pay for the new product,

where the buyer would be more eager to buy at higher states. However, being different

from the models as in Crawford and Sobel (1982), this does not necessarily guarantee that

the seller would also like to sell the new product when the states are high: the match to

the buyer’s taste may not be positively related to the cost, and when a “horizontal” aspect

like the taste is absent, the seller would be more eager to sell when the states are lower in

a natural case where the willingness to pay and the cost are postitively related.

To analyze this type of situations, this paper considers a general model of cheap talk and

asks when informative communication can be an equilibrium outcome. We first examine the

case of binary-actions—the cases like the seller-buyer relationship—and obtain a result that

is (at least superficially) similar to the one in Crawford and Sobel (1982): communication

can be informative if and only if preferences are aligned, where the meaning of “aligned” is

suitably defined to draw this conclusion. We then turn to the case with more actions and

show that communication can be informative even under an extreme form of preference
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misalignment, which we call perfect preference misalignment: this is a setting under which

our result for the binary-action case implies that there would not be any informative

equilibrium. We will also characterize the welfare to the agents and how the possibility of

Bayesian persuasion, i.e., the situation where the Sender commits to a messaging strategy

before observing the state of the world, changes the scope for information transmission.

For some of our examples, randomization by the Sender is necessary for there to exist

an informative equilibrium. The insight that randomization helps communication goes

back to Myerson (1991)’s example where the Sender has an option to send a pigeon that

gets to its destination with some probability less than one. An analogous idea appears in

Blume et al. (2007) that allows for noisy information transmission, and Green and Stokey

(2007) where the Sender receives a noisy signal. The randomization is exogenous in those

papers, but in our examples it is a best response for the Sender to randomize. In this

sense, our examples are similar in the spirit of Ambrus et al. (2013) and Ivanov (2010) who

consider models that introduce intermediaries and show that the intermediaries’ incentive-

compatible randomization may induce informative communication.

Miura (2014) considers information transmission with binary-actions and provided a

characterization of the equilibria. Despite some similarity, the model is quite different: he

considers the situation where the Sender’s message is restricted to be a subset of the state

space including the true state, while we consider cheap talk. Moreover, Miura (2014)’s

characterization is for pure-strategy equilibria and he shows that the characterization con-

tinues to hold with mixing under certain assumptions, while mixing plays an important

role in our model.

Like us, Kamenica and Gentzkow (2011) study how the degree of alignment between

Sender and Receiver preferences affects the Sender’s ex-ante payoff in Bayesian persuasion.

Their model differs from ours since they allow the Sender to commit to a messaging strategy

prior to observing the state. Moreover, the definitions of preference alignment are different

from each other as well.

2 Model

We consider two agents, a Sender S and Receiver R. Let I = {S,R}. There is a finite

state space Θ, a finite message space M with |M | > 2, and a finite action space A. The

game proceeds as follows. First, a state of the world θ ∈ Θ is realized according to a prior

distribution µ0 ∈ ∆(Θ). The Sender observes the state and sends a message m ∈ M to the
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Receiver who does not observe θ. After observing the message m, the Receiver takes an

action a ∈ A. The Sender’s strategy is a mapping σS : Θ → ∆(M), where we denote by

σS(m|θ) the probability of a message m given state θ. The Receiver’s strategy is a mapping

σR : M → ∆(A), where we denote by σR(a|m) the probability of an action a given message

m. An agent i ∈ {S,R} has a utility function over the Receiver’s action and the state of

the world: ui(a, θ). We assume that for all i ∈ I and θ ∈ Θ, ui(a, θ) ̸= ui(a
′, θ) if a ̸= a′.

Define aθi to be the unique optimal action for agent i in state θ ∈ Θ. The dynamic game

specified here can be characterized by (Θ,M,A, µ0, u).

The solution concept of interest is a perfect Bayesian equilibrium (PBE). Given a game

(Θ,M,A, µ0, u), we say that a strategy profile σ = (σS, σR) is a PBE if the following hold:

1. (Sender’s optimality) For every θ ∈ Θ and for all m ∈ supp(σS(θ)),

m ∈ arg max
m′∈M

Ea∼σR(m′) [uS(a, θ)] .

2. (Receiver’s optimality) There exists µ : M → ∆(Θ) such that, for all m ∈ M and

a ∈ supp(σR(m)),

a ∈ argmax
a′∈A

Eθ∼µ [uR(a
′, θ)|m] ,

and for any m ∈ ∪θ∈Θsupp(σS(θ)) and θ ∈ Θ,

µ(θ|m) =
σS(m|θ)µ0(θ)∑

θ′∈Θ σS(m|θ′)µ0(θ′)
. (Bayes rule)

The following is trivially a PBE. The Sender sends an arbitrary message, and the

Receiver chooses an action that maximizes the expected payoff given the prior. We say

that a PBE is babbling if the Receiver’s action is independent of any message sent by the

Sender. Otherwise, we say that the PBE is informative.

To compare preferences over strategy profiles σ, σ′ ex-ante, write σ ⪰i σ
′ if i’s (ex-ante)

expected payoff from σ is weakly greater than the one form σ′.

3 Cheap Talk with a Binary-Action Set

In this section, we consider the case with binary-actions, e.g., when the Receiver’s actions

are either to buy or not. Let A = {B,N}.

4



Prior B N
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(b) PBE for ϵ = 0

Figure 1: A game where the profile of utility functions is consistent with a preference
profile that is not strongly aligned, but is aligned. Let ϵ ≥ 0.

In Section 3.1, we characterize the relationship between the agents’ preferences and the

existence of an informative PBE. Then, Section 3.2 considers the effect of communication

on the payoffs.

3.1 Preference Alignment and Informative Equilibria

Our characterization depends on the ordinal rankings over actions, so we first introduce a

notion that captures such ordinal rankings and relate it to the utility functions.

For each θ ∈ Θ and i ∈ I, let ≻θ
i be a strict linear order over A for player i at state θ.

Let ≻= (≻θ
i )i∈I,θ∈Θ be the preference profile. We restrict attention to preference profiles

such that the Receiver does not have a strictly dominant action., i.e., there is no a ∈ A

such that a ≻θ
R a′ for all a′ ̸= a and θ ∈ Θ.

Definition 1. A profile of utility functions u is consistent with ≻ if for all i ∈ I, θ ∈
Θ, a, a′ ∈ A, we have ui(a, θ) > ui(a

′, θ) if and only if a ≻θ
i a

′.

The following definition provides a characterization of alignment between preference

profiles:

Definition 2. A preference profile ≻ is aligned if there exist θ, θ′ ∈ Θ with θ ̸= θ′ such

that B ≻θ
i N and N ≻θ′

i B for all i ∈ I.

To understand the condition, we divide the possible preference profiles into cases that

satisfy certain properties - BB, BN , NB, and NN - where for a, a′ ∈ A we say a preference

profile satisfies aa′ if there exists θ ∈ Θ such that aθS = a and aθR = a′. See Figure 2. By

definition, preferences are aligned if they satisfy both BB and NN .
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We now provide some general results on the existence of informative PBE. Say that a

prior µ0 has full support if µ0(θ) > 0 for every θ ∈ Θ.

Theorem 1. Fix (Θ,M,A) such that |A| = 2, and a preference profile ≻.

1. If ≻ is aligned, then for all full-support priors µ0, there exists u consistent with ≻
such that the game (Θ,M,A, µ0, u) has an informative PBE.

2. If ≻ is not aligned, then for all full-support priors µ0 there does not exist u consistent

with ≻ such that the game (Θ,M,A, µ0, u) has an informative PBE.

We note that the proof of part 1 of Theorem 1 in fact shows that the profile of utility

functions satisfying the stated property is not a knife-edge case: the result holds for some

open set of profiles of utility functions, i.e., there exists u = (uS, uR) and ϵ > 0 such that

for all u′ in the ϵ-neighborhood of u, u′ is consistent with ≻ and has an informative PBE.

The first part says that as long as the preference profile is aligned, there is a profile of

utility functions that rationalizes the preferences and induces an informative PBE. This

part is rather straightforward. Indeed, it is an intuitive statement when at every state of

the world, the Sender and Receiver share an optimal action, such as in Figure 1 for ϵ = 0.

In this case, there is an informative PBE where the Sender truthfully reveals the state and

the receiver chooses the mutually optimal action. The result in part 1 can be obtained by a

continuity argument: we can observe that for ϵ > 0 sufficiently small, the strict incentives

are preserved, and hence we still obtain the existence of an informative PBE.

In contrast, part 2 of Theorem 1 is less straightforward because such continuity argu-

ment cannot be used. To prove the result, we first use the binary-action assumption to

show that, in any informative PBE, there are exactly two action distributions that can be

played by the Receiver on the path of play. To see this, fix an informative PBE and let A
be the set of action distributions that can be played on the path of play. By the definition

of informative PBE, A must constitute of multiple action distributions. The Sender has

strict preferences at each state, and so either strictly prefers action B or strictly prefers

action N . In the former types of states, the Sender must be sending a message that induces

the action distribution assigning the highest probability to B in A (denote such an action

distribution by αB).1 Similarly, in the latter types of states, the Sender must be sending

a message that induces the action distribution assigning the highest probability to N in

A (denote such an action distribution by αN). This shows that no message can induce

1Such a distribution must exist, as otherwise the fixed strategy profile would not be an equilibrium.
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an action distribution that is not αB or αN . Having shown that there are two possible

action distributions, we now use the non-alignment assumption to show that there cannot

exist an informative PBE. For example, if the preference profile does not satisfy BB, then

whenever the Sender sends a message that induces αB (such states must exist because αB

must be played with positive probability in equilibrium), the state must be such that the

Receiver strictly prefers N , and hence the Receiver must assign probability 1 to action N .

This implies that αB(B) = 0, which is a contradiction because αB(B) > αN(B) must hold.

Theorem 1 identifies the condition under which it is possible to have the existence

of an informative PBE is a possibility. We next take one step forward to ask when we

can guarantee the existence of an informative PBE. To this end, we consider a stronger

condition on the alignment of preferences.

Definition 3. ≻ is strongly aligned if it is aligned and for all θ ∈ Θ, either B ≻θ
i N for

all i ∈ I or N ≻θ
i B for all i ∈ I.

In terms of Figure 2, preferences are strongly aligned if they satisfy BB and NN , but

nothing else.

Theorem 2. Fix (Θ,M,A) such that |A| = 2, and a preference profile ≻.

1. If ≻ is strongly aligned, then for all full support priors µ0 and for all u consistent

with ≻, the game (Θ,M,A, µ0, u) has an informative PBE.

2. If ≻ is not strongly aligned, then for all full support priors µ0, there exists u consistent

with ≻ such that the game (Θ,M,A, µ0, u) does not have an informative PBE.

As with Theorem 1, the proof of Theorem 2 shows that both parts hold for some

open set of profiles of utility functions. In the proof of part 1, we find that a strongly

aligned preference profile admit a PBE where both agents receive the maximum possible

payoff. On the other hand, when considering preferences that are not strongly aligned, since

preferences could be aligned, it is possible to find utility functions that admit informative

PBE. However, part 2 of Theorem 2 states that we can always find a profile of utility

functions. consistent with the preference profile such that no informative PBE exists. The

idea is to construct payoffs such that the payoffs in the states with some misalignment are

significant, which jeopardizes the possibility of communication.

To understand the first part of Theorem 2, observe that when agents share an optimal

action at every state of the world, the following is a PBE: the Sender sends m1 at every

state where she prefers B (and hence, the Receiver prefers B as well by strong alignment),
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Figure 2: Properties that can hold for a preference profile. The rows represent the Sender’s
preferred action, and the columns represent the Receiver’s preferred action.

and m2 at every state where she prefers N (and hence, the Receiver prefers B as well by

strong alignment). Both types of states exist because the preferences are strongly aligned.

The Receiver then chooses B given m1 and N given m2. This is an equilibrium because at

each state, the agents receive the maximum possible payoff given the state.

The second part of Theorem 2 states that a preference profile that is not strongly aligned

can rationalize a profile of utility functions that admit no informative equilibria. To see why

this is always possible, note that since preferences are not strongly aligned, there is a state

where they disagree. Assume without loss that there is θNB such that the Sender prefers

N while the Receiver prefers B. For contradiction, assume that there is an informative

equilibrium σu for any consistent utility function u. Recall that there are two action

distributions induced by the Sender in equilibrium, αB and αN with αB(B) > αN(B),

and the Sender at θNB assigns positive probability to message mu that induces αN . By

taking uR(B, θNB) high enough, B becomes a unique best response for the Receiver after

observing mu. This means that αN(B) = 1, which is a contradiction because αB(B) ≤ 1

must hold.

3.2 The Payoff Consequences of Cheap Talk

The argument so far characterizes the behavior of agents under different preferences. What

is the effect of such behavior on the welfare? Define A0
i for i ∈ I as the set of ex-ante

optimal actions for i: A0
i = argmaxa∈A Eθ∼µ0 [ui(a, θ)]. Let δ : X → ∆(X) output a Dirac

distribution centered at its input. When clear, we let X be inferred from context.

We first start with the following two observations, which should be straightforward:

Observation 1. Fix (Θ,M,A, µ0, u). There is u0
R ∈ R such that any babbling PBE gives

the Receiver the payoff of u0
R.

Hence, there is a unique babbling payoff for the Receiver. This follows because, other-

wise, the Receiver would have no incentive to play the action distribution that induces the

lower babbling payoff.
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(a) uR = u0R (b) uR > u0R (c) Legend

Figure 3: Possible PBE payoffs when there exists an informative PBE σ with payoff profile
(uS, uR). Example games that generate such payoffs can be found in Figure 20 in the
Appendix. Note that Figure 3a and 3b cannot happen at the same time, which is shown
in Theorem 7 in the Appendix.

Observation 2. Fix (Θ,M,A, µ0, u). Under any PBE, the Receiver receives an ex-ante

payoff that is weakly greater than u0
R.

This follows because the Receiver always has a choice to ignore the message by the

Sender and take an ex-ante optimal action. Let uL
S and uH

S denote the worst and best

payoff, respectively, for the Sender under a babbling PBE. Let u∗ = (u∗
R, u

∗
S) be such that

u∗
i = Eθ∼µ0

[
ui(a

θ
S, θ)

]
, i.e., the utility profile when the Sender’s optimal action is played

in every state. Define ρσ : Θ → ∆(A) as a mapping from the state to the distribution of

actions induced by σ at that state, i.e. ρσ(a|θ) = Em∼σS(θ) [σR(a|m)]. We say that two

strategy profiles σ and σ′ are equivalent if ρσ = ρσ′ .

Theorem 3. Fix (Θ,M,A, µ0, u) such that |A| = 2. The following holds:

1. The set of PBE is Pareto-ranked, i.e., there does not exist PBE σ and σ′ such that

σ ≻S σ′ and σ′ ≻R σ.

2. If there exists an informative PBE σ, then there exists an informative PBE σ′ that

induces a payoff profile u∗.

3. All PBE payoff profiles are weakly greater than (uL
S , u

0
R).

4. All PBE are equivalent to a PBE that uses at most two messages with positive

probability, i.e., for all PBE σ there exists PBE σ′ such that ρσ = ρσ′ and | ∪θ∈Θ

supp(σ′
S(θ))| ≤ 2.

Part 1 shows that PBE profiles can be ranked by a linear order such that no agent is

worse off when choosing between PBE according to this order. Part 2 shows that if there
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exists an informative PBE within a given game, we can guarantee the existence of one that

gives the Sender her ex-post optimal payoff. Part 3 implies that since all payoff profiles

from some PBE are weakly greater than that of a babbling PBE, there does not exist

informative PBE where the Sender’s payoff is worse than all of her possible payoffs from

babbling PBE. This means that allowing the Sender to send messages cannot introduce a

PBE where she is worse off than in a PBE in a setting where she cannot send messages,

which gives her a payoff the same as those in some babbling PBE. For a more precise

theoretical characterization as well as illustrations of the set of PBE payoff profiles, that

subsumes these results, see Theorem 7 and Figure 17 in Appendix C.

To prove part 1 of Theorem 3, we assume for contradiction that there exist PBE σ

and σ′ such that σ ≻S σ′ and σ′ ≻R σ. Observe that σ′ must be an informative PBE.

This is because, if it were a babbling PBE, then σ0 ∼R σ′ ≻R σ would hold where σ0 is

a babbling PBE, but σ0 ≻R σ contradicts Observation 2. Recall that for an informative

PBE, there are only two action distributions induced by the Sender in σ′: αB and αN ,

such that αB(B) > αN(B), where the Sender at each θ ∈ Θ induces αaθS . The proof in the

Appendix first shows that αa = δ(a) for each a ∈ {B,N} must hold. That is, the Sender’s

preferred action in every state of the world is taken with probability 1 in any equilibrium.

To see why, note that if this is not the case, then there is an action a ∈ A such that for

all messages m sent with positive probability, σ′
R(a|m) > 0. However, if after any message

the Receiver is indifferent between playing a and playing σ′
R(a|m), then it must be that

the utility the Receiver achieves under σ′ is the same as the one in the strategy profile in

which the Receiver plays a given any message. This strategy profile can be shown to be a

PBE, and it contradicts our previous observation that σ′ ≻R σ0, where σ0 gives payoff u0
R,

hence it must be that αa = δ(a) for all a ∈ A. As the Sender gets her best payoff in every

state of the world when in the PBE σ′ is played, it cannot be the case that σ ≻S σ′. Hence

we have a contradiction, and so we can conclude that the set of PBE is Pareto-ranked.

Note that this argument shows a result that is stronger than the claim of part 1. This

is because the argument shows that if there is a PBE σ where the Receiver’s payoff is

strictly greater than u0
R, then the payoff profile induced must be u∗. This also provides a

proof of part 2 when the Receiver’s payoff in σ is strictly greater than u0
R. To complete the

proof of part 2, we thus only need to consider σ such that the payoff to the Receiver is u0
R.

Without loss, suppose B is played with positive probability in some babbling PBE. Given

σ, consider αB and αN as previously described. If both distributions have full support

over actions, then the Receiver is indifferent between the two actions after any message,
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and it must be that any action distributions (α̃B, α̃N) that satisfy α̃B(B) > α̃N(B) can

be induced by an informative PBE. This is because the action distributions preserve the

Receiver optimality due to his indifference between actions, and at any state, no deviation

by the Sender would induce an action distribution that plays her preferred action with a

strictly greater probability. This in particular implies that the action distributions that

play the Sender’s optimal action with probability one at each state (i.e., α̃B = 1 and

α̃N = 0) is also part of a PBE. Hence, the Sender’s ex-post optimal payoff is a PBE

payoff. In fact, any payoff for the Sender in (uL
S , u

∗
S] is an equilibrium payoff. Similarly, if

αB(B) = 1 and αN has full support, then the Receiver is indifferent between all actions

when mN ∈ M that induces αN is sent. Thus any α̃ such that α̃B(B) = 1 and α̃N(B) < 1

gives the Sender payoffs in the set (uL
S , u

∗
S]. Finally, if α

B(B) = αN(N) = 1, then since the

Receiver’s ex-ante payoff is u0
R, when he has observed mN , he must be indifferent between

playing B with positive probability and playing αN . Given this action distribution, the

Sender has her preferred action played in every state, so the Sender receives payoff u∗
S in

σ.

If the Receiver gets a strictly higher payoff than u0
R in an informative PBE, then we

can recall by the explanation of part 1 in Theorem 3 that u∗ is the payoff profile induced.

These results are illustrated in Figure 3. Hence, the payoff profile in any informative PBE

is weakly greater than some babbling PBE’s payoff profile. Since this is also true of any

babbling PBE, and all PBE are either babbling or informative PBE, we can conclude that

the payoff profile of any PBE is weakly greater than the payoff profile of any babbling PBE

that induces the payoff profile (uL
S , u

0
R). This proves the claim of part 3.

Finally, part 4 in Theorem 3 follows from the following observations. First, from any

PBE σ we can construct another PBE σ′ where all messages sent induce different action

distributions by combining messages that induce the same action distribution. This doesn’t

change the incentives of the Sender, and if it was optimal for the Receiver to play the same

distribution given different messages, it is also optimal when these messages are bundled.

As there are only two actions and the Sender has strict preference, if there were three

messages that induced different distributions each then one of them must be suboptimal

for some preference as action distributions can be ranked by the Sender. Thus, in σ′ there

must be at most two messages sent with positive probability.
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Prior L C R
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θ1 0, 4 1, 1 4, 0
1
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θ2 4, 0 2, 2 0, 4
1
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θ3 0, 4 3, 3 4, 0

(a) Game
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1
2

1

1
2

1
2

1

(b) PBE

Figure 4: A game with a perfectly misaligned preference profile but an informative PBE.

4 Beyond Binary-Action Sets

In this section we explore further results when we relax the binary-action assumption. We

begin with counterexamples that contrast our results on the payoffs of equilibria and the

existence of informative equilibria in the binary-action setting. We then provide a char-

acterization of equilibrium strategies and payoffs when the preference profile is perfectly

misaligned.

4.1 Counterexamples

Part 2 of Theorem 1 shows, in the binary-action setup, that there does not exist an in-

formative PBE when preferences are not aligned. Even beyond the binary-action case,

non-existence of an informative PBE seems intuitive in settings with perfectly misaligned

preference profiles.

Definition 4. A preference profile ≻ is perfectly misaligned if for all θ ∈ Θ and actions

a, a′ ∈ A, a ≻θ
S a′ if and only if a′ ≻θ

R a.

The following example shows that an informative PBE can exist even when preferences

are perfectly misaligned.

Example 1 (Informative PBE under perfectly misaligned preferences). Consider the game

in Figure 4a. It has a profile of utility functions consistent with a perfectly misaligned

preference profile. However, one can show that the following strategy profile σ is an
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Prior L C R
1
3

θ1 2, 3 1, 2 0, 0
1
3

θ2 −99, 0 1, 1 −101, ϵ
1
3

θ3 0, 0 1, 2 2, 3

(a) Game

θ1

θ2

θ3

m1

m2

L

R

C

1

1
2

1
2

1

1

1

(b) PBE

Figure 5: A game where the results of Theorem 3 do not extend. Let ϵ > 0 be sufficiently
small.

informative PBE:

σS(θ1) = δ(m1), σS(θ2) =

m1 with probability 1
2

m2 with probability 1
2

, σS(θ3) = δ(m2);

σR(m1) =

L with probability 1
2

R with probability 1
2

, σR(m2) = δ(C).

Figure 4b provides a graphical representation of this strategy profile. The utility profile

induced by σ is (11
4
, 11

4
), whereas the unique babbling PBE induces (2, 2). △

In the above example, we find that, even under perfectly misaligned preferences, there

can exist an informative PBE where the Sender and Receiver are both strictly better off

than in the babbling PBE. We later show in Theorem 4 that this is not possible in games

with binary states.

We can also observe that the set of PBE does not satisfy all the properties found in

Theorem 3. Consider the following example.

Example 2 (Sender is worse off in informative PBE). Consider the game in Figure 5a.
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Prior L C R
1
2

θ1 4, 4 0, 0 6, 1
1
2

θ2 0, 0 4, 4 6, 1

(a) Game

θ1

θ2

m1

m2

L

R

C

1

1

1

1

(b) PBE

Figure 6: A game where the result of part 2 in Theorem 3 do not extend, i.e. the Sender
does not achieve her optimal payoff.

The following is an informative PBE:

σS(θ1) = δ(m1), σS(θ2) =

m1 with probability 1
2

m2 with probability 1
2

, σS(θ3) = δ(m2)

σR(mi) =

δ(L) if mi = m1

δ(R) if mi = m2

.

Figure 5b provides a graphical representation of this strategy profile. We can observe

that the ex-ante payoff profile for this informative PBE is (−32, 2 + ϵ
6
). In the unique

babbling PBE, where C is played with probability 1, the payoff profile is (1, 5
3
). Hence

the Sender is strictly worse off in the informative PBE than in the babbling PBE, whereas

the Receiver is strictly better off. This implies that the conclusion of part 1 of Theorem

3, i.e., that the set of PBE is Pareto-ranked, does not generally hold when there are more

than two actions. Moreover, notice that 1 is the lowest babbling PBE payoff because the

babbling PBE is unique. Hence, the conclusion of part 3 of Theorem 3, that all PBE payoff

profiles are weakly above (uL
S , u

0
R), does not hold, either.

2 △

Furthermore, the following example shows that part 2 of Theorem 3 does not hold in

general either:

Example 3 (Sender does not achieve her optimal payoff). Consider the game in Figure

2We note that a counterexample for parts 1 and 3 of Theorem 3 does not require that there are at least
3 states. A more contrived example with two states can be found in Appendix F.
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6a. Note that u∗ = (6, 1) holds. The following is an informative PBE:

σS(θ1) = δ(m1), σS(θ2) = δ(m2)

σR(m1) = δ(L), σS(m2) = δ(C)

Figure 6b provides a graphical representation of this strategy profile. The payoff profile

induced by this informative PBE is (4, 4).Although an informative PBE exists, there is no

PBE that induces the payoff of u∗. This is because no posterior distribution over states

would induce R as an optimal action by the Receiver. In fact, the best payoff that the

Sender can achieve in this game is 4, which can be induced by σ. To see why 4 is the best

payoff, observe that no posterior distribution over the states would make R a best response

for the Receiver. Hence, there cannot be a PBE that plays R with positive probability.

This implies that L and C are the only possible actions that may be played in equilibrium,

and so it is clear that 4 is the best possible PBE payoff for the Sender. △

To see why a counterexample to part 2 of Theorem 3 exists when there are more than

2 actions, first note that the Sender at each state induces the best action distribution

among those the Receiver would play in the given equilibrium. In a binary-action setting

where the Receiver’s payoff in σ is greater than his babbling payoff, the Sender gets her

highest feasible payoff in each state. In Example 3, however, each of the Receiver’s action

distributions places probability one on different actions, while zero probability is placed

on the Sender’s preferred action. In the proof of the binary-action case, we relied on

the property that in an informative equilibrium, in every state of the world the Sender’s

preferred action is played with positive probability because there are only two actions.

From this, we can construct an equilibrium where the Receiver plays with probability

one the Sender’s preferred action in every state. In contrast, the case with more than

two actions does not generally have this property because there does not need to be any

probability placed on the Sender’s preferred action in each state.

4.2 Perfectly Misaligned Preference Profiles

When preferences are perfectly misaligned, we can show that the state is never fully revealed

by the Sender in arbitrary finite action spaces. We say the Sender pools in all states for

a given strategy profile σ if for all m ∈ ∪θ∈Θsupp(σS(θ)), |{θ ∈ Θ|m ∈ supp (σS(θ))}| > 1.

That is, for every message sent with positive probability, there are multiple states that

induce such a message. We say the Receiver mixes on path for a given strategy profile σ
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if there exists θ ∈ Θ and m ∈ M such that σS(m|θ) > 0 and |supp(σR(m))| > 1. That is,

there is a state where the receiver plays a mixed action.

Proposition 1. Fix (Θ,M,A), and consider a preference profile ≻. If ≻ is perfectly

misaligned, then for all full support priors µ0, u consistent with ≻, and any informative

PBE σ in the game (Θ,M,A, µ0, u), the Sender pools in all states and the Receiver mixes

on path.

In general, when there are more than two actions, the results of Section 3 no longer

hold, as the previous section illustrated. As such, we restrict our attention in the following

theorem to studying perfectly misaligned preference profiles when there are only two states:

Theorem 4. Fix (Θ,M,A) such that |Θ| = 2, and consider a preference profile ≻. If ≻
is perfectly misaligned, then for all full support priors µ0 and all u consistent with ≻, the

Receiver is indifferent between all PBE in the game (Θ,M,A, µ0, u).

When preferences are perfectly misaligned and there are more than two states, Example

1 shows that there is an informative PBE where the Receiver is strictly better off than in

a babbling PBE.

The idea behind the proof is to first note that if there are binary states θ1 and θ2,

then sending a message that induces a posterior different from the prior necessarily places

higher probability on the state which sent it, and lower probability on the other state.

If there exists such a message, then there must also exist another message that places

correspondingly higher probability on the other state and lower probability on the given

state. If the Receiver’s optimal action is different under the posterior induced by each

message, then the action distribution induced by θ1 must be strictly worse for the Sender

at θ1 than the distribution at θ2. This follows from the Receiver having perfectly misaligned

preferences to the Sender. In such a case, the Sender would have an incentive to deviate,

hence it must be that the Receiver’s optimal action distribution does not change. Thus we

can conclude that he his indifferent amongst all PBE.

5 Alternative Models of Strategic Communication

In this section, we compare alternative models of strategic communication to cheap talk.

In particular, we study how equilibrium payoffs vary when considering different modes of

communication such as Bayesian persuasion, arbitration, mediation and negotiation. We
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will see that the result that the preference alignment enables informative communication

is robust, while the details of the effect may be different across models.

5.1 Bayesian Persuasion

In Bayesian persuasion (Kamenica and Gentzkow, 2011), the Sender commits to her mes-

saging strategy σS prior to observing the state of the world. This is in contrast to cheap

talk, where the Sender cannot commit and therefore chooses her message to maximize her

utility given the realized state, rather than choosing a messaging strategy that maximizes

her utility in expectation of the state. Following Kamenica and Gentzkow (2011), we say

a strategy profile σ = (σS, σR) is a Bayesian Persuasion Equilibrium (BPE) if σR

satisfies Receiver optimality, as in a PBE, and σS satisfies Sender’s ex-ante optimality :

σS ∈ arg max
σ′
S :Θ→∆(M)

Eθ∼µ0Em′∼σ′
S(θ)

Ea∼σR(m′) [uS(a, θ)] .

Furthermore, we assume that when the Receiver is indifferent between actions, he takes

an action that is optimal for the Sender.We say σ is a Receiver-preferred BPE if there

is no other BPE that the Receiver strictly prefers. We can note the following observation

comparing the Sender’s welfare according to a Sender-preferred BPE and a PBE in the

same game:

Observation 3. Fix (Θ,M,A, µ0, u). Any BPE is ex-ante weakly better for the Sender

than any PBE in the game (Θ,M,A, µ0, u).

This follows from the fact that in Bayesian persuasion, the Sender can always commit

to a messaging strategy used in any PBE, and hence her optimal strategy must be weakly

better. In part 2 of Theorem 3, we found that when there exists an informative PBE, there

is a PBE where the Sender gets her ex-post best utility in every state. Hence, when there

is an informative PBE, the Sender-preferred BPE gives the same ex-ante utility as some

PBE for both the Sender and Receiver. Can we characterize how equilibria and payoff

profiles may differ between cheap talk and Bayesian persuasion in general? To do so, we

define a new alignment condition on a preference profile.

Definition 5. A preference profile ≻ is weakly misaligned if there exists θ ∈ Θ such

that aθR ̸= aθS.

This condition of a preference profile holds when the Sender and Receiver disagree on
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Figure 7: This diagram depicts the space of preference profiles considered in this work
for the binary-action setting, and how the different conditions on profiles relate to one
another. Note that we assumed that the Receiver does not have a dominant action when
constructing this diagram.

Prior B N
1
2

θ1 4, 0 0, 3
2

1
2

θ2 0, 1 1, 0

(a) Part 1 (perfectly mis-
aligned)

θ1

θ2

m1

B

N
1

1

1

(b) PBE for 8a

θ1

θ2

m1

m2 B

N

1
2

1
2

1

1

1

(c) Sender prefers this to 8b

Figure 8: Example for Part 1 of Theorem 5.

their preferred action in some state of the world. To see how this condition relates to the

other alignment definitions in the binary-action setting, see Figure 7.

Theorem 5. Fix (Θ,M,A) such that |A| = 2, and a preference profile ≻.

1. If ≻ is weakly misaligned, then for all full-support priors µ0, there exists u consistent

with ≻ such that for the game (Θ,M,A, µ, u), the Receiver-preferred BPE has an

ex-ante payoff profile different from all PBE payoff profiles.

2. If ≻ is weakly misaligned, then for all full-support priors µ0 there exists u consistent

with ≻ such that for the game (Θ,M,A, µ, u), the Receiver-preferred BPE payoff

profile is the same as some as PBE payoff profile.

3. If ≻ is not weakly misaligned, then for all full-support priors µ0 and for all u con-

sistent with ≻, the Receiver-preferred BPE payoff profile is the same as some PBE

payoff profile in the game (Θ,M,A, µ, u).
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Prior B N
1
3

θ1 1, 1 0, 0
1
3

θ2 0, 0 1, 3
1
3

θ3 0, 1 1, 0

(a) Part 2 (aligned)

θ1

θ2

θ2

m1

m2

B

N

1

1

1

1

1

(b) PBE and BPE for 9a

Prior B N
1
3

θ1 2, 3 0, 0
1
3

θ2 2, 0 0, 1
1
3

θ3 0, 1 1, 0

(c) Part 2 (not aligned)

θ1

θ2

θ2

m1

B

N

1
1

1

1

(d) PBE and BPE for 9c

Figure 9: Examples for Part 2 of Theorem 5.

Parts 1 and 2 of Theorem 5 show that under weakly misaligned preferences, we can al-

ways find consistent profiles of utility functions where Bayesian persuasion gives a different

payoff profile to cheap talk, as well as profiles where the payoff profile is the same. To see

why the former is possible, observe that we can always construct profiles such that we have

no informative PBE (as in Figure 8b). In particular, we can consider two cases: either

preferences are perfectly misaligned or there is a state where both agents agree on their

preferred action. In the latter case, we can choose the payoff functions where the Sender

and Receiver agrees on the optimal action to be sufficiently high such that full information

disclosure - the Sender at each state sends a unique message - is ex-ante more profitable

than the babbling PBE.

When the preference profile is instead perfectly misaligned, we can leverage the idea

that noisy communication can improve outcomes. For example, say the Receiver’s babbling

strategy is N with probability one, as in Figure 8a. We can construct the Receiver’s utility

function such that there is a BPE where the Receiver’s strategy has positive probability

on both actions. Thus we can arbitrarily increase the payoff in the state where the Sender

prefers B so that her ex-ante payoff in this BPE is greater than her payoff in the babbling

PBE. Consider the following example:

Example 4. With respect to the game in Figure 8a, there is a unique PBE given by Figure

8b, which gives the babbling payoff profile where the Sender’s ex-ante payoff is 1
2
. Consider
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the following strategy profile in Figure 8c:

σS(θ1) =

m1 with probability 1
2

m2 with probability 1
2

, σS(θ2) = δ(m2)

σR(mi) =

δ(N) if mi = m1

δ(B) if mi = m2

where m1,m2 ∈ M are distinct. The ex-ante payoff for the Sender under this strategy

profile is 1. As σR is a best response to σS, the Sender can guarantee a payoff of 1 in

a BPE. Hence in a BPE, the Sender can achieve an ex-ante payoff higher than in any

PBE. △

To see part 2, we can consider two possible cases: either the preference profile is aligned

or not. In the latter case, by choosing the Receiver’s payoff to be sufficiently high in states

of agreement between both agents, we can ensure that there is a PBE where the Sender

achieves her ex-post optimal payoff. This is as in Figure 9, and since the outcome is ex-post

optimal for the Sender, a BPE cannot do better ex-ante.

In the case when the preference profile is not aligned, there are only babbling PBE as

per part 2 of Theorem 1. Furthermore, when preference are not perfectly misaligned, we

can always ensure that the babbling action is unique and identical to the preferred action

in the state where both agents agree. Without loss, let the babbling action be B, and let

θ3 be the state where they disagree with the Sender preferring N , as in Figure 9c. Note

that in ΘN , there is only ever disagreement, and that we cannot improve ex-ante payoffs

by improving payoff in states in ΘB. Hence, improving Sender payoffs in states θ ∈ ΘN

would require pooling of messages from states in ΘN with states in ΘB. Yet we can choose

the payoff in ΘN to be sufficiently small such that for any message sent that pools between

states, the reduction in payoff for states in ΘB is more than any gain, if it exists, in payoff

for states in ΘN . As such, the Sender cannot improve her ex-ante payoff over the babbling

PBE. A similar idea can be leveraged when the preference profile is perfectly misaligned.

Finally, when preferences are not weakly misaligned, the arguments for part 3 of The-

orem 5 are the same as that for the proof of part 2 in Theorem 1 and the proof of part 1

in Theorem 2. In particular, when the preference profile is not weakly misaligned, since

we assume that the Receiver does not have a dominant action then it must be the case

that the Sender agrees with the Receiver in every state of the world. This implies that

the preference profile is strongly aligned, and thus the Sender achieves her ex-post optimal
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payoff in some PBE. Hence, commitment cannot improve on this payoff.

5.2 Arbitration, Mediation and Negotiation

Other models of strategic communication are found in the literature on dispute resolution.

In this section, we study arbitration, mediation and negotiation as described in Goltsman

et al. (2009). These models share a common feature whereby there is a third-party T that

facilitates the interaction between agents.

Arbitration. In arbitration, T acts in the Receiver’s stead and commits to a strategy

that maximizes his ex-ante expected utility while ensuring that the Sender has an incentive

to truthfully reveal the state of the world. This can also be viewed as the Receiver com-

mitting to a state-contingent strategy that incentivizes truth telling. Consider a strategy

σT : Θ → ∆(A), where σT (θ) denotes the distribution of actions played in state θ ∈ Θ. σT

is an Optimal Arbitration Rule (OAR) if it is a solution to the following optimization

problem:

max
p:Θ→∆(A)

Eθ∼µ0Ea∼p(θ) [uR(a, θ)]

subject to

θ ∈ argmax
θ̂∈Θ

Ea∼p(θ̂) [uS(a, θ)] (Sender-IC)

When comparing between OAR and PBE, we compare their ex-ante payoff profiles. Note

the following observation:

Observation 4. Fix an OAR σT and a babbling PBE σ0. We have σT ⪰R σ0.

We say that σT is babbling if for all θ, θ′ ∈ Θ, σT (θ) = σT (θ
′). Otherwise it is called

informative. Note that a babbling OAR induces the same ex-ante payoff profile as some

babbling PBE. Furthermore, if a babbling OAR exists, then for each babbling PBE, there

is a babbling OAR with the same payoff profile.

Mediation. On the other hand, mediation considers a third-party that can only give non-

binding recommendations to the Receiver about their action. An equilibrium in this setting

must thus consider the Receiver’s inference about the state from the recommendation.

21



This is equivalent to having an obedience condition, which ensures that the Receiver has

an no incentive to deviate from the third-party’s recommended action. σT is an Optimal

Mediation Rule (OMR) if it solves the following:

max
p:Θ→∆(A)

Eθ∼µ0Ea∼p(θ) [uR(a, θ)]

subject to

θ ∈ argmax
θ̂∈Θ

Ea∼p(θ̂) [uS(a, θ)] (Sender-IC)

and for all a ∈ A such that Eθ∼µ0 [p(a|θ)] > 0,

a ∈ argmax
a′∈A

Eθ∼µ0 [uR(a
′, θ)|p(θ) = a] (Obedience)

A babbling OMR is defined similarly as a babbling OAR.

Negotiation. Negotiation differs from arbitration and mediation in that the third-party

does not act on behalf of the Receiver, but rather structures how communication between

the agents occur. In particular, T chooses a protocol by which both agents send messages

to each other simultaneously for a possibly infinite period of time. Once this period of

time has ended, the Receiver takes an action. To formalize this, let MS and MR be the

message spaces for the Sender and Receiver respectively. We say the protocol of a game

is P = (τ,MS,MR), where τ ∈ N ∪ {∞} is the time horizon. Let Σ(P ) denote the set of

PBE of the extensive-form game defined by a given protocol P , and for a strategy profile

σ ∈ Σ(P ), let ρσ : Θ → A denote the distribution of actions played by the Receiver at a

given state induced by strategy profile σ . N = (P, σ) is an Optimal Negotiation Rule

(ONR) if it solves the following optimization problem:

max
P,σ

Eθ∼µ0Ea∼ρσ(θ) [uR(a, θ)]

subject to σ ∈ Σ(P ). That is, T chooses a protocol that induces a PBE which maximizes

the Receiver’s ex-ante payoff.

We find that in a binary-action environment, the Sender-optimal solution for each mode

of communication, apart from BPE, gives the same payoff for both agents:

Theorem 6. Fix the game (Θ,M,A, µ0, u) such that |A| = 2. If σPBE, σOAR, σOMR, N
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are Sender-preferred PBE, OAR, OMR, and ONR solutions respectively, then they induce

the same payoff profile. In particular, this payoff profile is either (uR
0 , u

H
S ) if there is no

informative PBE, or u∗ otherwise.

The proof follows by first showing that the claim holds for just PBE and OAR, and then

showing that that ordered set of payoff profiles for PBE, ONR, OMR, OAR are actually

written in (weakly) increasing order. We show the former claim by first determining the

OAR payoff profile is either u∗ or u0. This is achieved by considering the different alignment

cases for preference profiles, and showing that the obedience constraints either bind or the

optimal action in each state can be chosen to be optimal for the Sender. This allows us

to order payoffs between PBE and OAR. To see that the the remaining payoff profiles can

be ordered as above, observe that the set of feasible strategies for PBE, ONR, OMR, and

OAR are, in a sense, (weakly) decreasing in the subset order. For example, any feasible

mediation strategy is a feasible arbitration strategy. In the case of ONR, what this means

is that from any feasible negotiation strategy, we can construct a feasible arbitration or

mediation strategy that preserves the ex-ante payoff profile of the negotiation strategy.

Given that the OAR and PBE payoff profiles of interest are identical, we can use this to

show that the payoff profiles of ONR and OMR, which are ranked between the OAR and

PBE payoff profiles, are also identical.

We can use Theorem 6 in conjunction with our alignment results in Theorem 1 to

provide results for these other communication models:

Corollary 1. Fix (Θ,M,A) such that |A| = 2, and a preference profile ≻.

1. If ≻ is aligned, then for all full support priors µ0 there exists u consistent with ≻
such that the game (Θ,M,A, µ0, u) has an informative OAR, OMR, and ONR.

2. If ≻ is not aligned, then for all full support priors µ0 and u consistent with ≻, the

game (Θ,M,A, µ0, u) does not have an informative OAR, OMR, or ONR. [Can we

use the same uility function for all of these?]

Beyond the binary-action setting, the payoff equivalence between the Sender-preferred

solutions no longer holds. The following examples study games with three actions to show

this.

Example 5 (PBE and OAR have different utility profiles). Consider the game in Fig-

ure 10a. First observe that in any PBE, there are no two messages sent with positive

probability such that the belief of the Receiver is different, i.e. there does not exist
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Prior L M R
1
2

θ1 1, 2 0, 0 −10, 3
1
2

θ2 0, −1 1, 1 −2, −2

(a) Game

θ1

θ2

m1

L

M

R

1

1
1

(b) PBE

θ1

θ2

L

M

R

1

1

(c) σT

Figure 10: A game with three actions where the results of Theorem 6 does not hold for an
OAR.

m1,m2 ∈ ∪θ∈Θsupp(σS(θ)) such that for some θ, µ(θ1|m1) ̸= µ(θ1|m2). If this were true,

then we can assume that µ(θ|m1) >
1
2
> µ(θ|m2) by Bayes’ plausibility3. Hence, Receiver

optimality would require that σR(m1) = ∆(R) and σR(R|m2) = 0. However the Sender

at state θ1 would have a profitable deviation by using the strategy σS(m1|θ1) = 1. This

contradicts σ being a PBE, hence µ(θ|m) is independent of m for all m ∈ supp(σS). By

Bayes’ plausibility, µ(θ|m) = µ0(θ) for all m ∈ supp(σS). Hence given any message, the

Receiver is indifferent over all actions, and we must have that σS(θ1) = σS(θ2). If the

latter did not hold, there would be a message where the belief changes from the prior. In a

Sender-preferred PBE, the Receiver’s strategy would not place positive probability on R.

Finally, we show that in this PBE, the Sender is indifferent to a babbling PBE σ∗ where

σ∗
R(M |m) = 1 for all m ∈ supp(σS). Since the Receiver is indifferent over playing L and

M in a PBE, the only means by which the Sender’s utility may improve is for there to

be m ∈ supp(σS(θ1)) such that σR(L|m1) > 0. If σS(m1|θ1) < 1, then there would be

a profitable deviation for the Sender at θ1 to σS(m1|θ1) = 1. However if σS(m1|θ1) = 1,

then it must be that σS(m1|θ) = 1 for all θ since the Receiver’s belief cannot change. As

such, we have that the only Receiver action distribution induced by any message is σR(m1),

hence the ex-ante utility of the Sender is always 1
2
. Thus the Sender is indifferent between

σ and σ∗, and the Sender-preferred PBE payoff profile is (1
2
, 1
2
).

Now we show that Sender-preferred OAR has a different utility profile by showing that

there is a feasible arbitration rule that has higher utility that the Sender-preferred PBE.

First note that the following σT satisfies the Sender-IC constraint for an arbitration rule:

σT (θ) =

L if θ = θ1

M if θ = θ2

3That is, Eθ∼µ0
Em∼σS(θ) [µ(θ|m)] = µ0(θ) for all θ ∈ Θ.
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Prior L M R
1
2

θ1
1
2
, 10 1, 9.9 0, 1

1
2

θ2 0, 0 1, 1
5

1
2
, 1

(a) Game

θ1

θ2

m1

L

M

R

1

1
1

(b) PBE

θ1

θ2

L

M

R

1

1

(c) σT

Figure 11: A game with three actions where the results of Theorem 6 does not hold for an
OMR.

Furthermore, the utility profile for this strategy is (1, 3
2
). Hence the Sender-preferred OAR

is distinct from the Sender-preferred PBE. △

Example 6 (PBE and OMR have different utility profiles). Consider the game in Figure

11a. Observe that the following mediation rule is the Sender-preferred OMR σT :

σT (θ) =

L if θ = θ1

R if θ = θ2

Note that it gives the Receiver their ex-post optimal payoff 11
2
, and the Sender’s payoff is

1
2
. Furthermore, this is the unique Sender-preferred OMR as no other feasible mediation

strategy gives the Receiver this payoff or better. Now note that the following strategy

profile σ∗ is a Sender-preferred PBE:

σS(θ) = δ(m1) , σR(m) = δ(M)

The Sender receives their ex-post optimal payoff 1, and the Receiver’s payoff is 10.1. Since

the Sender must receive 1 in every Sender-preferred PBE, and the unique Sender payoff

in the OMR is 1
2
, then there is no Sender-preferred PBE and OMR that induce the same

payoff profile. △

To show PBE and ONR can have different utility profiles, we refer to Example 2.6 in

Aumann and Hart (2003). In particular, they construct an example that shows how two

stages of conversation can give an equilibrium strategy with higher payoff for the Receiver

than just one stage of conversation. The former provides a lower bound for the ONR

payoff, and latter corresponds to the payoffs achieved in some PBE.
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≻ Case(s) Result

Aligned Does not contain BB and NN Obs 6
Aligned (BB,NN) Prop 7
Aligned (BB,BN,NB,NN) Prop 2
Aligned (BB,NB,NN), (BB,BN,NN) Prop 3

Misaligned Contains BB and NN Obs 6
Misaligned (BB,BN), (NB,NN) Prop 4
Misaligned BB,NN,BN,NB, (BB,NB), (BN,NN) Prop 5
Misaligned (BN,NB), (BB,BN,NB), (BN,NB,NN) Corollary 2

Strongly Aligned All Prop 7

Weak Misaligned (BB,NB,NN), (BB,BN,NN) Prop 8
Weak Misaligned (BB,NB,BN,NN) Prop 9
Weak Misaligned Not (BB,NB,NN), (BB,BN,NN) or (BB,NB,BN,NN) Obs 7

Figure 12: Table of results and cases that prove Theorem 1 and 2. Cases refer to some
subset of {BB,BN,NB,NN}. For example, if BN holds, then this refers to there existing
θ ∈ Θ such that B ≻θ

S N and B ≻θ
R N .

A Proof of Theorem 1

The proofs of Theorem 1 and 2 are shown in various cases, as seen in Figure 12.

Observation 5. All preference profiles satisfy at least one of the following, and at most

all of them: BB,BN,NB,NN .

Given this observation, we can prove our theorem by considering these various cases. As

our results differ based on whether the preference profile is aligned or not, we can narrow

down which cases are necessary to consider depending on this property:

Observation 6. ≻ is aligned if and only if BB and NN simultaneously hold.

Thus for aligned profiles, we can just consider the cases where BB and NN hold

simultaneously, and for misaligned profiles we only need to consider all other cases. For

c = aa′, where a, a′ ∈ A, let Θc = {θ ∈ Θ : aθS = a, aθR = a′}. We first prove the following

useful lemma:

Lemma 1. Consider some preference profile ≻ for a given Θ. Let ∅ ≠ C ⊆ {BB,BN,NB,NN}
be the set of cases satisfied by ≻. Let |Θ̃| = |C|. The following hold:

1. If for all support priors µ̃0 ∈ ∆(Θ̃) there exists ũ satisfying C that has an informative

PBE, then for all support priors µ0 ∈ ∆(Θ) there exists u satisfying C that has an

informative PBE.
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2. If for all support priors µ̃0 ∈ ∆(Θ̃) there exists ũ satisfying C that has no informative

PBE, then for all support priors µ0 ∈ ∆(Θ) there exists u satisfying C that has no

informative PBE.

Proof. Consider the first part, and assume the antecedent is true. Let µ0 ∈ ∆(Θ̃) be a full-

support prior. Let Θ̃ = {θc}c∈C , and define µ̃0(θc) = µ0(Θc). Then there exists ũ : Θ̃ → R
that satisfies C with an informative PBE σ̃ by assumption. Define u : Θ → R as follows:

if θ ∈ Θ is such that c ∈ C holds, then ui(·, θ) = ũi(·, θc). Define the Sender’s strategy as

follows: if θ ∈ Θ is such that c ∈ C holds, then σS(θ) = σ̃S(·, θc). Define the Receiver’s

strategy as σR = σ̃R. We now verify that σ is a PBE for the full state space Θ. Observe

that there is no profitable deviation for σS at each θ since σ̃S is a PBE. As for σR, note for

m ∈ supp(σS(θ)) for θ ∈ Θc, we have that

Eθ∼µ0 [uR(a, θ)|m] =
∑
c∈C

∑
θ∈Θc

µ(θ|m)uR(a, θ)

=
∑
c∈C

ũR(a, θc)
∑
θ∈Θc

µ(θ|m)

=
∑
c∈C

ũR(a, θc)
∑
θ∈Θc

σS(m|θ)µ(θ)∑
θ′∈Θ σS(m|θ′)µ(θ′)

=
∑
c∈C

ũR(a, θc)
σ̃S(m|θc)∑

θ′∈Θ σS(m|θ′)µ(θ′)
∑
θ∈Θc

µ(θ)

=
∑
c∈C

ũR(a, θc)
σ̃S(m|θc)µ(ΘC)∑
θ′∈Θ σS(m|θ′)µ(θ′)

=
∑
c∈C

ũR(a, θc)µ̃(θc|m)

= Eθ∼µ̃0 [ũR(a, θ)|m] .

Observe that since σ̃R is an optimal solution to the above since it is a PBE, hence σR is

also optimal. Thus σ is a PBE. To see that this is an informative PBE, first note that the
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ex-ante utility of R is the same in both u and ũ:

Eµ [uR(a, θ)] =
∑
θ∈Θ

uR(a, θ)µ(θ)

=
∑
c∈C

∑
θ∈Θc

uR(a, θ)µ(θ)

=
∑
c∈C

∑
θ∈Θc

ũR(a, θc)µ(θ)

=
∑
c∈C

ũR(a, θc)
∑
θ∈Θc

µ(θ)

=
∑
c∈C

ũR(a, θc)µ(Θc)

=
∑
c∈C

ũR(a, θc)µ̃(θc)

= Eµ̃ [ũR(a, θc)] .

where we observe that Θ = ⊕c∈CΘc. Furthermore, the ex-ante utility correspond to σ and

σ̃ are the same:

EµEm∼σS(θ)Ea∼σR(m) [uR(a, θ)] =
∑
θ∈Θ

µ(θ)Em∼σS(θ)Ea∼σR(m) [uR(a, θ)]

=
∑
c

∑
θ∈Θc

µ(θ)Em∼σS(θ)Ea∼σR(m) [uR(a, θ)]

=
∑
c

∑
θ∈Θc

µ(θ)Em∼σ̃S(θ)Ea∼σ̃R(m) [ũR(a, θc)]

=
∑
c

Em∼σ̃S(θ)Ea∼σ̃R(m) [ũR(a, θc)]
∑
θ∈Θc

µ(θ)

=
∑
c

Em∼σ̃S(θ)Ea∼σ̃R(m) [ũR(a, θc)] µ̃(θc)

= Eµ̃Em∼σ̃S(θc)Ea∼σ̃R(m) [ũR(a, θc)] .

Since σ is distinct from a babbling PBE since it is an informative PBE, the same can be

said of σ̃. Observe that if σR does not take the same pure action after every message sent

in the support of σS, then this is the case of σ̃. Hence σ̃ is an informative PBE.

For the second claim, we proceed by contraposition. Assume there exists µ0 such that

for all u satisfying C there is an informative PBE. For θ̃c ∈ Θ̃, define µ̃0(θ̃c) = µ0(Θc).

Consider some ũ satisfy C. Define u : Θ → R as follows: if θ ∈ Θc for c ∈ C, then
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ui(·, θ) = ũi(·, θ̃c). Observe that u satisfies C, hence there exists σ an informative PBE.

Define the Sender’s strategy as follows: for θ̃C ∈ Θ̃, σ̃S(m|θ̃c) = 1
µ(Θc)

∑
θ∈Θc

µ0(θ)σS(m|θ).
Define the Receiver’s strategy as σ̃R = σR. Observe that σ̃S is optimal since the utility of

each agent in Θc is the same, hence if there were a deviation for S at some state in θ̃c, then

there would also be a deviation for σ(θ) for θ ∈ Θc. We now verify that σ̃R is optimal.

Consider somem ∈ M sent with positive probability. We can see that optimization problem

given m for the Receiver in Θ̃ is the same as that in Θ:

Eµ [u(a, θ)|m] =
∑
θ∈Θ

uR(a, θ)µ(θ|m)

=
∑
c∈C

∑
θ∈Θc

ũR(a, θc)
µ(θ)σS(m|θ)∑

θ′∈Θ µ(θ′)σS(m|θ′)

=
∑
c∈C

ũR(a, θc)
1∑

θ′∈Θ µ(θ′)σS(m|θ′)
∑
θ∈Θc

µ(θ)σS(m|θ)

=
∑
c∈C

ũR(a, θc)
µ(Θc)σ̃S(m|θc)∑

c′∈C
∑

θ′∈Θc′
µ(θ′)σS(m|θ′)

=
∑
c∈C

ũR(a, θc)
µ̃(θc)σS(m|θc)∑

c′∈C µ̃(θc′)σ̃S(m|θc′)

=
∑
c∈C

ũR(a, θc)µ̃(θc|m)

= Eµ̃ [ũR(a, θc)|m] .

As such, we can see that σ̃R is optimal as σR is a PBE. Thus σ̃ is a PBE. We now verify

that σ̃ is an informative PBE. Note that the babbling PBE between ũ and u give the same

ex-ante utility to both agents by appealing to the same argument as before. The following

shows that the ex-ante utility of R is the same between σ̃ and σ, and the same argument
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applies for S:

EµEm∼σS(θ)Ea∼σR(m) [uR(a, θ)] =
∑
θ∈Θ

µ(θ)Em∼σS(θ)Ea∼σR(m) [uR(a, θ)]

=
∑
c∈C

∑
θ∈Θc

µ(θ)Em∼σS(θ)Ea∼σR(m) [ũR(a, θc)]

=
∑
c∈C

∑
θ∈Θc

µ(θ)
∑
m∈M

σS(m|θ)Ea∼σR(m) [ũR(a, θc)]

=
∑
c∈C

∑
m∈M

∑
θ∈Θc

µ(θ)σS(m|θ)Ea∼σR(m) [ũR(a, θc)]

=
∑
c∈C

∑
m∈M

Ea∼σR(m) [ũR(a, θc)]
∑
θ∈Θc

µ(θ)σS(m|θ)

=
∑
c∈C

∑
m∈M

Ea∼σR(m) [ũR(a, θc)]µ(Θc)σ̃S(m|θc)

=
∑
c∈C

µ̃(θc)
∑
m∈M

σ̃S(m|θc)Ea∼σR(m) [ũR(a, θc)]

= Eµ̃Em∼σ̃S(θc)Ea∼σR(m) [ũR(a, θc)] .

Observe that again, if σR does not take the same pure action after every message sent in

the support of σS, then this is the case of σ̃. Hence σ̃ is an informative PBE. Thus we can

conclude that σ̃ is an informative PBE since σ is an informative PBE.

This allows us to study a small finite state space instead of one of arbitrary size. Now

we prove the first result for an aligned preference profile by studying the following cases.

Proposition 2. If ≻ is aligned and satisifes (BB,NB,BN,NN), then for all full sup-

port priors µ0 there exists u consistent with ≻ such that there is an informative PBE.

Furthermore, this holds generically.

Proof. As per Lemma 1, we can just consider a Θ̃ that satisfies the same conditions. Fix

µ0. Let Θ̃ = {θBB, θBN , θNB, θNN}. Let u′ be the profile of utility functions in Figure 13.

Let u be defined as follows:

ui(a, θ) =
u′
i(a, θ)

µ(θ)
.

Observe that u satisfies (BB,NB,BN,NN) since u′ does and u is a scaling of it at each
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Prior B N
1
4

θBB 1, 2 0, 0
1
4

θBN 1, 0 0, 1
1
4

θNB 0, 1 1, 0
1
4

θNN 0, 0 1, 2

Figure 13: A game with a profile of utility functions that is consistent with an aligned,
but not strongly aligned, preference profile that admit an informative PBE. This example
is utilized in the proof of Theorem 1 for the case where BB, BN , NB, and NN hold for
a preference profile.

Prior B N
1
3

θBB 1, 1 0, 0
1
3

θNB 0, 1 1, 0
1
3

θNN 0, 0 1, 2

Figure 14: (BB,NB,NN)

state. Consider the following candidate PBE: for all a, a′ ∈ A

σS(θaa′) = δ(ma)

σR(ma) = δ(a)

where {ma}a∈A ⊆ M distinct. Observe that the Sender gets her optimal action at each

state, hence there is no profitable deviation for them. To verify the optimality of the

Sender’s strategy, observe that after observing ma′ , her expected utility is the following:

ūR(a) =
1

µ(θa′B) + µ(θa′N)

2 a = a′

1 otherwise
.

Hence σR is optimal, and σ is a PBE. It has the ex-ante utility for the Receiver of 4. On

the other hand, the babbling utility is upper bounded by 3. Hence this is an informative

PBE. Furthermore, we can note that any small perturbation of the utilities in u, and thus

ū, still have the same properties as above. Thus this property holds generically.

The next case of interest is the following:

Proposition 3. If ≻ is aligned and satisifes (BB,NB,NN), then for all full support priors

µ0 there exists u consistent with ≻ such that there is an informative PBE. Furthermore,
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this holds generically.

Proof. As per Lemma 1, we can just consider a Θ̃ that satisfies the same conditions. Fix

µ0. Let Θ̃ = {θBB, θNB, θNN}. Let u′ be the profile of utility functions in Figure 14. Let u

be defined as follows:

ui(a, θ) =
u′
i(a, θ)

µ(θ)
.

Observe that u satisfies (BB,NB,NN). Consider the following candidate PBE: for all

a, a′ ∈ A

σS(θaa′) = δ(ma)

σR(ma) = δ(a)

where {ma}a∈A ⊆ M distinct. Observe that the Sender gets her optimal action at each

state, hence there is no profitable deviation for them. To verify the optimality of the

Receiver’s strategy, observe that after observing mB, his expected utility is

ūR(a) =

1 a = B

0 otherwise

and for mN it is

ūR(a) =
1

µ(θNB) + µ(θNN)
·

2 a = N

1 a = B
.

Thus σR is optimal, and σ is a PBE. Observe that the ex-ante utility is 3, whereas the

babbling utility is upper bounded by 2. Hence this is an informative PBE. Observe that

this example is invariant to the labelling of actions, hence we can reproduce a similar

example for the case where (BB,BN,NN) holds. Furthermore, we can note that any

small perturbation of the utilities in u, and thus ū, still have the same properties as above.

Thus this property holds generically.

Finally, we can consider the case of only (BB,NN) holding by observing that this

satisfies the definition of strongly aligned, and thus we can appeal to Proposition 7 as used

in the proof of Theorem 2.
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Now we prove the following statement: if ≻ is misaligned, then for all full-support

priors µ0 ∈ ∆(Θ) there does not exist (uS, uR) consistent with ≻ such that there exists σ

informative. Assume for contradiction that for that there exists a full-support prior µ0 ∈
∆(Θ) and there exists (uS, uR) consistent with ≻ such that there exists σ an informative

PBE. Note that a misaligned preference profile implies the following: for all θ, θ′ distinct,

one of the following must hold: there exists i ∈ I such that B ≻θ
i N , or there exists i′ ∈ I

such that N ≻θ′

i′ B. By our previous observation, we can see that any case can hold for a

misaligned preference profile except for BB and NN simultaneously. We now prove these

remaining cases. First we prove the following useful lemma:

Lemma 2. In an informative PBE, there exists αB, αN ∈ ∆(A), θB, θN ∈ Θ, and mB ∈
supp(σS(θ

B)),mN ∈ supp(σS(θ
N)) where for αB = σR(m

B) and αN = σR(m
N) we have

that (
αB ≻θB

S αN
)
∧
(
αN ≻θN

S αB
)
.

Furthermore, we have that αN ̸= αB, B ≻θB

S N , N ≻θN

S B, and

(
B ≻θ

S N =⇒ mN ̸∈ suppσS(θ)
)
∧
(
N ≻θ

S B =⇒ mB ̸∈ suppσS(θ)
)
.

Proof. Let σ be an informative PBE. First note that there existsm,m′ ∈ M ′ = ∪θ∈Θsupp(σS(θ))

such that σR(m) ̸= σR(m
′). To see why, suppose not for contradiction. Thus we have that

σR(m) = α ∈ ∆(A) for all m ∈ M ′. Hence the Receiver has the same utility as a babbling

PBE, thus this would be an optimal response according to the prior distribution. This

contradicts σ not being a babbling PBE by definition.

Since σR(m) ̸= σR(m
′) for some m,m′ ∈ M ′, it must be the case that each action is

taken with positive probability. Let A = {α ∈ ∆(A) : ∃m ∈ M ′ α = σR(m)} be the set of

action distributions that are induced by some message sent with positive probability. Let

αB, αN ∈ ∆(A) be such that for all α ∈ A

αB(B) ≥ α(B)

αN(N) ≥ α(N).

Note that αB(B) and αN(N) are positive by the previous observation. Furthermore, since

all states induce the same distribution, there must exist θB, θN ∈ Θ and mB,mN ∈ M ′

such that αa = σR(m
a) for all a ∈ A. Since there exists multiple action distributions taken
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in an informative PBE, it must be that case αB ̸= αN . Clearly it is the case that the

Sender at θB and θN prefer B and N as the optimal action, since otherwise there would

be a profitable deviation to send the other message. Since the action distributions are

different, if the Sender at a state prefers B to N , then they would not send mN since this

induces a distribution over actions αN that is not favourable compared to αB. The same

applies for the Sender at a state that prefers N to B, where they would not send mB,

hence this gives the final claim.

Now consider the case where the Sender prefers the same action at every state:

Proposition 4. If only one of the following holds, then there are no informative PBE:

(BB,BN)(NB,NN).

Proof. First consider the case where (BB,BN) holds. Observe that this implies that for

all θ ∈ Θ, B ≻θ
S N . Assume for contradiction that there is an informative PBE σ. Hence

by Lemma 2 there must be more θB and θN that induce different action distributions αB

and αN for some message mB and mN respectively such that:

B ≻θ
S N =⇒ αB ≻θ

S αN

N ≻θ
S B =⇒ αN ≻θ

S αB.

However by assumption, θN is such that B ≻θN

S N . Thus the Sender at θN has a profitable

deviation from σS(θN) to δ(mB), which contradicts the assumption of σ being an PBE. A

similar argument holds for (NB,NN).

Now consider the case where the Receiver has the same preference over actions for all

states:

Proposition 5. If only one of the following holds, then there are no informative PBE:

BB,NN,BN,NB, (BB,NB), (BN,NN).

Proof. First assume only BB holds. Since preferences are strict this implies for all θ ∈ Θ,

B ≻θ
i N for all i ∈ I. Thus for all priors µ ∈ ∆(Θ),

{B} = argmax
a∈A

Eθ∼µ [uR(a, θ)] .

This holds for all posteriors induced by σS, hence {B} is always optimal. Thus the optimal

outcome is the same under the prior, hence it is equivalent to a babbling outcome. The
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Prior B N
1
4

θBB 1, 2 0, 0
1
4

θBN 1, −1 0, 0
1
4

θNB 0, 2 1, 0
1
4

θNN 0, −1 1, 0

Figure 15: A game where the profile of utility functions is consistent with a preference
profile that is not strongly aligned, but is aligned. Used in the proof of Theorem 2 for the
case where BB,BN,NB, and NN hold for a preference profile.

argument follows similarly for the remaining cases since the Receiver’s optimal action is

always the same.

Consider the following assumption.

Assumption 1. Let Θi
a = {θ ∈ Θ : a ≻θ

i a′} for all i ∈ I and for all a, a′ ∈ A such that

a ̸= a′. Then there exists a, a′ ∈ A such that for ΘS
a′ ⊆ ΘR

a .

This assumption effectively says that if there is some information uniquely sent by the

Sender at a certain state, then the Receiver will be able to identify that they have the

opposite preference over actions according to the actual state.

Proposition 6. If Assumption 1 hold and |A| = 2, then there are no informative PBE.

Proof. Assume for contradiction that there is an informative PBE σ. Thus there must exist

αB and αN that satisfy the conditions in Lemma 2. Without loss of generality, assume that

ΘS
B ⊆ ΘR

N . Thus we have that µ(Θ
S
B|mB) = 1 since mB is only sent by Senders with states

in ΘS
B. Thus µ(ΘR

N |mB) = 1, and the unique optimal action distribution is α = δ(N).

This contradicts property of αB(B) > 0 since 0 = α(B) = σR(m
B)(B) = αB(B). Hence σ

cannot be an informative PBE. A similar argument holds for ΘS
N ⊆ ΘR

B.

Corollary 2. Assumption 1 is satisified in the following cases: (BN,NB), (BB,BN,NB),

(BN,NB,NN).

Proof. By direct observation.

B Proof of Theorem 2

First we consider the following claim: if ≻ is strongly aligned, then for all full-support

priors µ0 ∈ ∆(Θ) and for all (uS, uR) consistent with ≻, there exists σ informative. The

following proposition proves this claim:
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Prior B N
1
3

θBB 1, 1 0, 0
1
3

θNB −1, 2 0, 0
1
3

θNN −1, −1 0, 0

Figure 16: A game with utility functions consistent with a non-strongly aligned preference
profile, and admits no informative equilibria.

Proposition 7. If ≻ is strongly aligned if and only if (BB,NN) holds. Furthermore,

truth telling is an informative PBE.

Proof. The first statement follows directly from the definition of strongly aligned. For

the second statement, recall that for δ(mθ) = σS(θ), µ(θ|mθ) = 1. Hence σR(m) = aθR is

optimal. Furthermore, for all θ ∈ Θ the Sender cannot find a profitable deviation by sending

a different message since for all m ∈ supp(σS(θ), σR(m) ⪰θ
S α for all α ∈ ∆(A). To see

informativeness of the PBE, not that since different actions are optimal at different states,

a babbling PBE is dis-preferred to an PBE that is ex-post optimal for the Receiver.

Now we prove the second claim. The following observation suggests that all that remains

to prove is the case when a preference profile is not strongly aligned but not misaligned:

Observation 7. If a preference profile is misaligned, then by Theorem 1, any utility func-

tion consistent with the preference profile does not have an informative equilibrium. Hence

we need only to consider the case where the preference profile is not strongly aligned but not

misaligned. This corresponds to one of the following cases: (BB,NB,NN), (BB,BN,NN),

and (BB,BN,NB,NN).

Thus we have the following theorem for these remaining cases:

Proposition 8. If ≻ satisfies (BB,NB,NN) or (BB,BN,NN), then for all full-support

priors µ0 ∈ ∆(Θ) there exists (uS, uR) consistent with ≻ such that there does not exist σ

informative. Furthermore, this holds for an open set of profiles of utility functions.

Proof. By Lemma 1, we can just consider the case where |Θ| = 3. Assume without loss that

(BB,NB,NN) holds, since the argument for (BB,BN,NN) is similar due to symmetry.

Let ũ be the same as that in Figure 16. Define u : Θ → R as follows:

u(a, θ) =
ũ(a, θ)

µ̃0(θ)
.
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Note that the babbling PBE σ0 gives ex-ante utility of 2 to the Receiver, since B is uniquely

taken in such an PBE. To see that there is no informative PBE, assume for contradiction

that there is an informative PBE σ.

By Lemma 2, let mN induce αN . Note that mN must be sent by the Sender at both

θNB and θNN as S at θNB cannot send a message not sent by other states. To see why, if

it does then θNB is revealed to the Receiver, who then takes the worst action for S at θNB

(which is strictly less preferred than αN , which takes action N with positive probability).

Since θNN is the only other state to induce αN since it is suboptimal for θBB, and θNB

must share a message with another state, it must be that θNB sends some m that induces

αN . Let mN be this message without loss of generality. Furthermore, θNN cannot send a

message that is not sent by θNB. If they did, then the Receiver would take action N with

probability 1 upon receiving such a message. For this not to be a profitable deviation for

θNB to send the same message, for all messages sent by θNB or θNN , the Receiver must

take action N . This gives a worse utility ex-ante than taking action B, a contradiction

since in any PBE it must be that σ ⪰R σ0. Furthermore, they must send messages with

the same probability. Assume they do not, if θNB sends a message with higher probability

than θNN , then B is the optimal action by the Receiver. Thus deviating to sending mN

always would be a profitable deviation. If θNN sends a message with higher probability

than θNB, then there must be a message it sends that is of lower probability than θNB since

they share the same support, leading to the same issue. Thus σS(θNB) = σS(θNN) = βN .

We now observe the following:

µ0(θ|mN) =


0 if θ = θBB

µ0(θNB)
µ0(θNB)+µ0(θNN )

if θ = θNB

µ0(θNN )
µ0(θNB)+µ0(θNN )

if θ = θNN

=⇒ {B} = argmaxEθ∼µ0

[
uR(a, θ)|mN

]
.

Hence αN(N) = 0, a contradiction. Thus it cannot be that σ was an informative PBE.

Furthermore, we can note that any small perturbation of the utilities in ũ, and thus u, still

have the same properties as above. Hence this property holds for an open set of profiles of

utility functions.

We can provide a similar argument as Proposition 8 to show the following case:
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Proposition 9. If ≻ satisfies (BB,BN,NB,NN), then for all full-support priors µ0 ∈
∆(Θ) there exists (uS, uR) consistent with ≻ such that there does not exist σ informative.

Furthermore, this holds for some open set of profiles of utility functions.

Proof. By Lemma 1, we can just consider the case where |Θ| = 4. Let ũ be the same as

that in Figure 15. Define u : Θ → R as follows:

u(a, θ) =
ũ(a, θ)

µ̃0(θ)
.

Note that the babbling PBE σ0 gives ex-ante utility of 2 to the Receiver, since B is taken

in such an PBE. To see that there is no informative PBE, assume for contradiction that

there is an informative PBE σ. By Lemma 2, let ma induce αa for a ∈ A. By the same

argument in Proposition 8, we find that ma is sent by θaB and θaN , and S at θaB and θaN

share a message distribution. This give mB or mN , and R takes action B regardless. This

contradicts αN(N) > 0, and thus there is no informative PBE. Furthermore, we can note

that any small perturbation of the utilities in ũ, and thus u, still have the same properties

as above. Hence this property holds for an open set of profiles of utility functions.

C Characterization of Equilibrium Payoffs

Theorem 7. Fix (Θ,M,A, µ0, u) such that |A| = 2 and µ0 has full support. The following

hold:

1. (General PBE) Define

U0(x) = {(uS, u
0
R) ∈ R2|uS ∈ [uL

S , x]}.

The set of PBE payoff profiles is either

(a) U0(uH
S ),

(b) U0(u∗
S), or

(c) U0(uH
S ) ∪ {u∗} where u∗

R > u0
R and uH

S < u∗
S.

2. (Babbling PBE) The set of babbling PBE payoff profiles is {(uS, u
0
R) ∈ R2|uS ∈

[uL
S , u

H
S ]}.
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3. (Informative PBE) Suppose there is an informative PBE, σ, and let (uS, uR) be its

payoff profile.

(a) i. If uR = u0
R, then the set of informative PBE payoff profiles is {(ũS, u

0
R) ∈

R2|ũS ∈ (uL
S , u

∗
S]}.

ii. If uR > u0
R, then the set of informative PBE payoff profiles is {u∗}.

(b) If the Receiver has a unique ex-ante optimal action, i.e., |A0
R| = 1, then uS > uH

S

(= uL
S)

(c) i. If the Sender has a unique ex-ante optimal action, i.e., |A0
S| = 1, then

uS > uL
S .

ii. If the Sender is ex-ante indifferent between the two actions, i.e., |A0
S| = 2,

then uS ≥ uH
S (= uL

S).

4. All PBE are equivalent to a PBE that use at most two messages with positive prob-

ability, i.e., for all PBE σ there exists PBE σ′ such that ρσ = ρσ′ and | ∪θ∈Θ

supp(σ′
S(θ))| ≤ 2.

Theorem 7 begins by providing a general characterization of the set of PBE payoff

profiles. In particular, part 1 shows that this set can take three possible structures: firstly,

it could just be the set of babbling PBE payoff profiles (Part 1a). Second, the set could

be the payoff profiles such that the Receiver gets the babbling payoff u0
R and the Sender

receives any payoffs in a range starting from her worst babbling payoff uL
S to her best

ex-post payoff u∗
S (Part 1b). The final case is that the set has two components - the

babbling payoff profiles as well as the Sender optimal ex-post payoff u∗ - but it must be

that both agents’ payoffs in u∗ strictly improve over any babbling payoff (Part 1c). A

notable consequence of Part 1 is that all equilibria are Pareto-ranked. That is, there does

not exist PBE σ and σ′ such that the Sender strictly prefers σ over σ′, and the Receiver

strictly prefers σ′ over σ.

Parts 2 and 3 provide a specific description of the two main elements of the set of

payoff profiles: the payoff profiles from the babbling and informative PBE. Part 2 concerns

the former and provides a rather stratightforward characterization. In this case, the set of

payoff profiles must be convex because if the set has multiple elements, then the Receiver is

indifferent between the two actions, and this implies that the Receiver is indifferent across

any mixture over the two actions.

More nontrivial is part 3, which first shows in part 3(a)i that if there is an informative

PBE where the Receiver gets his babbling payoff, then the set of informative PBE payoff
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(a) Part 1a (b) Part 1a (c) Part 1a, 1b

(d) Parts 1a, 1b (e) Parts 1b, 3(a)i, 3b, 3(c)ii (f) Parts 1b, 3(a)i, 3(c)i

(g) Parts 1c, 3(a)ii, 3b, 3(c)ii (h) Parts 1c, 3(a)ii, 3(c)i (i) Legend

Figure 17: Possible PBE payoffs for binary-action cheap talk games, with the relevant
parts of Theorem 7 listed. Note that part 2 applies to all examples. Example games that
generate such payoffs can be found in Figure 20 in the Appendix.
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Prior B N
1
4

θ11 1, 1 0, 0
1
4

θ12 1, 0 0, 1
1
4

θ21 −1, 1 1, 0
1
4

θ22 −1, 0 1, 1

(a) Game

θ11

θ12

θ21

θ22

m1

m2

B

N

1

1

1

1

1
2
+ ϵ

1
2
+ ϵ

1
2
− ϵ

1
2
− ϵ

(b) PBE

Figure 18: A game with an informative PBE where the Sender is worse off than some
babbling PBE.

profiles is exactly all payoff profiles where the Receiver attains his babbling payoff, and

the Sender gets any payoff in (uL
S , u

∗
S]. On the other hand, part 3(a)ii states that if the

Receiver’s payoff strictly improves in some informative PBE over u0
R, then all informative

PBE give the same payoff u∗.

Based on the uniqueness of the ex-ante optimal actions for each agent, further structure

can be imposed on the set of payoff profiles. Part 3b consider the case when the Receiver

has a unique ex-ante optimal action. There is a single babbling PBE payoff profile in

this case, and it is shown that in any informative PBE, the Sender must strictly improve

upon her payoff from the babbling PBE. The condition of uniqueness is necessary for the

conclusion of the claim to hold. To see this, consider the following example.

Example 7 (Sender prefers babbling to informative PBE). Consider the game in Figure

18. The following is an informative PBE:

σS(θij) = δ(mi)

σR(m1) =

B with probability 1
2
+ ϵ

N with probability 1
2
− ϵ

σR(m2) =

N with probability 1
2
+ ϵ

B with probability 1
2
− ϵ

wherem1,m2 ∈ M are distinct and ϵ ∈ (0, 1
6
). The ex-ante utility of the Sender is 1+6ϵ

4
. The

Sender gets ex-ante utility 1
2
from the babbling PBE such that N is taken with probability

1, and this payoff is greater than the ex-ante utility of the informative PBE. △

This example shows that the Sender can receive a strictly lower payoff in an informative
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PBE than in a babbling PBE. However, part 3c of Theorem 7 shows that the Sender is

never strictly worse off in a informative equilibrium than in all babbling PBE. In particular,

part 3(c)i states that if the Sender has a unique ex-ante optimal action, then she is always

strictly better off than in the worst babbling PBE. Part 3(c)ii concerns the case where the

Sender is ex-ante indifferent over actions and hence there is a unique babbling payoff for

her (her best and the worst babbling payoffs are the same as each other). It shows that the

Sender’s payoff in an informative equilibrium is weakly greater than this unique babbling

payoff. Furthermore, if the Sender is ex-ante indifferent over the two actions, then they

are also indifferent to any distribution over actions. Hence, the Sender is also indifferent

between all babbling PBE. Overall, part 3c implies that any informative PBE cannot give

worse payoffs to the Sender than in all babbling PBE.

[Note for myself]

To prove part 1 of Theorem 7, we begin by noting that the set of PBE payoff profiles

can be exactly as in part 1a. This follows because this is the set of babbling PBE payoff

profiles, which always exist for any game. Furthermore, any other payoff that might exist

must come from an informative PBE, hence in games where such PBE do not exist, the

set of PBE payoff profiles are just the babbling payoff profiles (we can find examples of

profiles of utility functions such that only babbling PBE exist). Now, consider the case

where there are informative PBE. We consider two possibilities: there is an informative

PBE that improves the Receiver’s payoff over his babbling payoff, or there is no such PBE.

According to parts 3(a)i and 3(a)ii, u∗ is a PBE payoff profile under both possibilities.

However, they cannot hold simultaneously as the former asserts that u∗
R > u0

R, whereas

the latter assumes that u∗
R = u0

R. Thus, either the set of payoff profiles are as in 1b, or the

set of payoff profiles are the babbling payoff profiles and u∗, where u∗
R > u0

R as in 1c.

To see why part 3a holds, first consider part 3(a)i. Assume there is an informative

PBE where the Receiver gets u0
R. Without loss, we let B be some action played with

positive probability in a babbling PBE. Let αB and αN be the action distributions played

in the informative PBE. We can recall that states such that the Sender strictly prefers

a ∈ A induce αa. Note that it cannot be the case that αB(B) = αN(B), since this is

an informative equilbrium, hence it must be that αB(B) > αN(B). If both distributions

have full support over actions, then the Receiver is indifferent between actions after any

message, and it must be that any action distribution α̃a that satisfies α̃B(B) > α̃N(B) can

be induced by a informative PBE. Furthermore, this allows for the Sender’s ex-post optimal

payoff, hence any payoff for the Sender in (uL
S , u

∗
S] is possible. Similarly, if αB(B) = 1 and
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αN has full support, then the Receiver is indifferent between all actions when mN that

induces αN is sent. Thus any α̃ such that α̃B(B) = 1 and α̃N(B) < 1 gives payoff profiles

in the same set. Finally, if αB(B) = αN(N) = 1, then since the Receiver’s payoff is u0
R,

they must be indifferent to playing B with positive probability after observing mN since

his payoff does not change. Thus we can use a similar construction of α̃a.

On the other hand, when the Receiver’s payoff from a PBE is greater than his babbling

payoff, as in part 3(a)ii, we find that u∗ is the payoff profile induced. Note that given parts

1 and 3(a)i, this implies part 3(a)ii, however for exposition we prove 3a to show 1. First we

can show that the distribution of actions induced in σS(θa) must be αa = δ(a) for aθaS = a

and a ∈ A. To see why, note that if this is not the case then there is an action a ∈ A such

that for all messages m sent with positive probability, σR(a|m) > 0. However, if after any

message the Receiver is indifferent between playing a or playing σR(a|m), then it must be

that the utility the Receiver achieves is the same as a babbling PBE. In particular, it must

be that a is an action played with probability one in some babbling PBE, and thus the

Receiver’s payoff uR is equal to u0
R. This would contradict the assumption that uR > u0

R,

hence it must be that αa = δ(a) for all a ∈ A. Furthermore, for this to be a PBE, it must

be that if the Sender strictly prefers an action a to a′ in state θ ∈ Θ, then all messages

they send must induce αa. Thus in all states the Sender gets her optimal payoff, and the

ex-ante payoff profile is u∗.

Part 3b follows directly from 3a by first noting that if the Receiver has a unique ex-ante

optimal action, then uL
S = uH

S . If there is an informative PBE, the Receiver’s payoff in

this PBE has either strictly improved over the babbling payoff or stayed the same. In the

former case, by part 3(a)ii, the Sender gets her ex-post optimal payoff u∗
S this informative

PBE. This must be different to uH
S as the distribution of actions taken for each state in

a PBE that induces u∗ places probability one on the Sender’s preferred action, and thus

if uH
S = u∗

S then the PBE must take the same action in every message sent with positive

probability. This contradicts the PBE being an informative PBE. In the latter case, where

the Receiver’s payoff is the same as a babbling PBE, part 3(a)i shows that every informative

PBE must give the Sender payoff strictly greater than uL
S , which is equal to uH

S .

If the babbling PBE is unique, as in part 3b, then this also implies part 3c. Otherwise,

we can note that in any informative PBE the Receiver’s distribution over actions for all

messages has full support, i.e., both actions are played with positive probability. Given

that both actions induce a babbling PBE, if the Sender has a strict preference ex-ante over

actions, then the informative PBE must be strictly better than one of the actions, and thus
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also strictly better than the babbling PBE it induces. If the Sender is indifferent, then the

informative PBE is weakly better than one of the pure babbling PBE.

The explanation for the final claim, part 4, is as in the main text.

C.1 Proof of Theorem 7

Note that the arguments for parts 1 of Theorem 7 follows directly from the claims in parts 3

and 2, as explained in Section 3.2. Further observe that part 2 is direct from the definition

of a babbling PBE. Consider part 3(a)ii, which is shown in the following proposition:

Proposition 10. If σ ≻R σ0 for a PBE σ and babbling PBE σ0, then σ is an informative

PBE and σ induces the payoff profile u∗.

Proof. Assume for contradiction that the Receiver is not indifferent to some babbling

payoff, hence σ ≻R σ0 for σ0 a babbling PBE. Note that this must be an informative

PBE as the Receiver gets the same payoff as u0
R if it were a babbling PBE, which would

contradict the assumption that σ ≻R σ0. Recall that by Lemma 2, there exists multiple

action distributions take in PBE. Let αN and αB be said distributions, and note that for

all θ ∈ Θ and for all m ∈ supp(σS(θ))

a ≻θ
S a′ =⇒ σR(m) = αa

for a, a′ ∈ A. As such, it is either the case that αa = δ(a) for all a ∈ A or there exists

a ∈ A such that for all m ∈ M ′ = ∪θ∈Θsupp(σS(θ)) σR(a|m) > 0. The second case follows

by leveraging the fact that |A| = 2. In the first case, we can note that σ induces the

ex-post optimal utility for the Sender. Thus there cannot exist σ′ a strategy profile strictly

preferred by the Sender ex-ante. This is a contradiction, hence the other case must hold.

However, if this holds then Lemma 3 implies that σ is a babbling PBE:

Lemma 3. If there exists a ∈ A such that for all m ∈ M sent with positive probability

σR(a|m) > 0, then σ ∼R σ0 for some σ0 a babbling PBE and a is an action played with

positive probability in some babbling PBE.

Proof. We define a distribution of posteriors τ ∈ ∆(∆(Θ)) to be Bayes plausible if∑
µ∈Supp(τ)

µτ(µ) = Eµ∼τµ = µ0.

45



A Sender’s strategy σS induces τ if Supp(τ) = {µm}m∈M where

µm(θ) =
σS(m|θ)µ0(θ)∑

θ′∈Θ σS(m|θ′)µ0(θ′)
∀m ∈ M, θ ∈ Θ

and we have that

τ(µ) =
∑

m:µm=µ

∑
θ∈Θ

σS(m|θ)µ0(θ) ∀µ ∈ ∆(Θ)

Let τ ∈ ∆(∆(Θ)) be the set of induced posterior distributions corresponding to σ. Observe

that τ(µ) is Bayes plausible. We have that

Eθ∼µ0 [uR(a, θ)] ≤ max
a′

Eθ∼µ0 [uR(a
′, θ)]

= max
a′

Eµ∼τEθ∼µ [uR(a
′, θ)]

≤ Eµ∼τ max
a′

Eθ∼µ [uR(a
′, θ)]

= Eµ∼τEθ∼µ [uR(a, θ)]

= Eθ∼µ0 [uR(a, θ)]

where we observe that µ ∼ τ is some posterior distribution after observing m ∼ σS(θ) for

some θ, and that the following must hold since a occurs with positive probability for every

message (and thus posterior distribution):

a ∈ argmax
a′

Eθ∼µ [uR(a
′, θ)] .

Thus we find that σ ∼R σ0. Furthermore, we can observe that a gives the same payoff as

a babbling PBE to R, hence it is also a babbling PBE.

This gives another contradiction, implying that our assumption is false. Thus the

equilibrium action distribution is ex-post optimal for the Sender. As the Sender has strict

preference is every state, any strategy profile that induces her ex-post optimal payoff for

the Sender induces a unique payoff for the Receiver. Hence, σ induces the payoff profile

u∗.

Note that though the statement of part 3(a)ii assumes that σ is an informative PBE,

under the assumption that the Receiver’s payoff strictly improves over his babbling payoff,
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σ is necessarily an informative PBE.

Now we prove part 3(a)i of Theorem 7:

Proposition 11. If σ ∼R σ0 for an informative PBE σ and babbling PBE σ0, then the set

of informative PBE payoff profiles is {(uS, u
0
R) ∈ R2|uS ∈

(
uL
S , u

∗
S

]
}

Proof. Let σ be an informative PBE such that the Receiver gets a babbling payoff. Recall

from Lemma 2 that there are two distinct action distributions αB and αN played in a

PBE, such that states where the Sender prefers B induce αB and those where they prefer

N induce αN . Without loss of generality let αB(B) > αN(B). We proceed by considering

various cases. Let mB and mN be messages sent by the Sender that induce αB and αN

respectively.

First suppose 0 < αB(B) < 1 and 0 < αN(B) < 1. Given this, the Receiver is

indifferent between B and N given either message, and any σ̃ such that the induced action

distribution α̃B, α̃N satisfy α̃B(B) > α̃N(B) is a PBE. This is because it preserves Receiver

optimality, and the Sender at each state has no profitable deviation. Furthermore, if the

Receiver is indifferent after both messages, then this induces the ex-ante babbling payoff

for the Receiver. Note that this allows for Sender’s ex-post optimal payoff, since we can

have α̃B(B) = 1 and α̃N(B) = 0. Note that there are some informative PBE with the

same payoff as a babbling equilibirum, as per Lemma 3. Hence there are a continuum of

informative equilibria, from but not including the worst babbling payoff for the Sender to

the ex-post optimal payoff for the Sender, where the receiver is indifferent between them.

Now consider the case where αB(B) = 1 and 0 < αN(B) < 1. R is indifferent between

B and N given mN . Thus for any σ̃ that induces α̃B(B) = 1 and any α̃N(B) < 1, we have

an informative PBE that induces the babbling payoff. Furthermore, we can achieve the

ex-post optimal sender payoff by having α̃N(B) = 0. Thus again we have a continuum of

informative PBE payoff profiles that span from a babbling payoff for the Sender to ex-post

optimal payoff. Observe that the case where αN(B) = 0 and 0 < αB(B) < 1 is similar.

The final case to consider is where αB(B) = 1 and αN(B) = 0. Without loss of

generality let B be one of the babbling action. If the Receiver gets the babbling payoff

under σ, then if they play B with positive probability given mN his payoff does not change.

Hence we can apply the same construction of a continuum as in the case where αB(B) = 1

and 0 < αN(B) < 1.

To see that there cannot be other informative PBE payoff profiles, that (u0
R, u

L
S) cannot

be an informative payoff as this is only induced by a babbling PBE. Furthermore, if uR > u0
R

is a payoff to the Receiver in some informative PBE, then by 3(a)ii such a PBE must induce
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a payoff profile u∗. However, since the Sender has strict preference in every state, if a PBE

induces the payoff u∗
S to the Sender, then the Receiver must have payoff u∗

R. As shown

above, u∗
S is an informative PBE payoff in the set described, and thus it must be that

u∗
R = u0

R. Hence this payoff is covered by the set described.

For the parts 3b and 3c of Theorem 7, we assume without loss of generality that B is

the action taken in some babbling PBE. This is possible as either R takes a single pure

action in a babbling PBE, or mixes. If they mix, they must be indifferent and thus all pure

actions are babbling. If they take a single pure action, we can refer to this as B without

loss. Now we show both parts together.

Proposition 12. If |A0
R| = 1, then σ ≻S σ0 for all informative PBE σ and babbling PBE

σ0. If |A0
S| = 1, then for all informative PBE σ there is some babbling PBE σ0 such that

σ ≻S σ0. If |A0
S| = 2, then σ ⪰S σ0 and σ0 ∼S σ̃0 for all informative PBE σ and babbling

PBE σ0 and σ̃0.

Proof. Assume there exists an informative PBE σ. First consider the following the case:

suppose there exists a message m ∈ M that is sent with positive probability, such that

σR(m) = δ(B). Thus the Sender at each state must get at least her babbling payoff. Note

that there must exist some θ ∈ Θ such that S sends a message m′ ∈ M and σR(N |m′) >

0. Otherwise every message sent induces the action B with probability 1, which is a

contradiction since this would be the babbling PBE. At this θ, it must be the case that

N ≻θ
S B. If the Sender at every state gets a weakly better payoff than babbling, and at

some state gets a strictly better payoff, then the Sender gets higher utility ex-ante since

all states occur with positive probability. This proves all claims if the assumption holds,

that there is a message which induces B.

On the other hand, assume there does not exist a message that induces B with proba-

bility 1. It must be the case that after every message m ∈ M , σR(N |m) > 0. By Lemma 3,

N is a babbling PBE as well, which is a contradiction if we assume that there is a unique,

pure babbling PBE. This proves the first claim.

As for the second claim, if the Sender has a uniquely optimal ex-ante action, assume

without loss that it is B. If B and N are babbling PBE, then any mixture is a babbling

PBE. Hence the mixture α induced by σ, is a babbling PBE, and thus S is indifferent to

it ex-ante. Note that α places positive probability on all actions, as it is a non-degenerate

mixture of two action distributions, at least one of which is non-degenerate (as per Lemma
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2 due to the informativeness of σ). For action distributions of the form αβ = βδ(B) +

(1 − β)δ(N), where β ∈ [0, 1], the Sender’s ex-ante preference αβ must be increasing in

β since its ex-ante optimal action is B uniquely. As α is strictly preferred to all αβ for

β < β̄ for some β ∈ (0, 1), if it is non-degenerate, then α is ex-ante strictly preferred by S

to some babbling distribution since all distributions are babbling. If the Sender does not

have a uniquely optimal ex-ante action, as in the third claim, then any action distribution

is optimal. Thus, we can say that σ is weakly preferred ex-ante to all babbling PBE by

the Sender, and they are indifferent to all babbling PBE.

We now consider the final claim in part 4. Let σ be some PBE. First note that if there

are two messages that induce the same distribution over actions, that is there are distinct

m,m′ ∈ ∪θsuppσS(θ) such that σR(m) = σR(m
′), we can construct a new equivalent PBE

σ′ that combines the messages into a single message. Formally, let ∼σ be an equivalence

relation on ∪θsuppσS(θ) where m ∼σ m′ if σR(m) = σR(m
′). Let the equivalence classes

be given by [m] ∈ Mσ, Mσ is the induced partition over messages sent with positive

probability. We treat [m] as a representative message when appropriate. Hence define σ

as follows: for all ∀[m] ∈ Mσ,

σ′
S([m]|θ) =

∑
m′∈[m]

σS(m|θ)

σ′
R([m]) = σR([m])

Observe that ρσ = ρσ′ . To see σ′ is a PBE, first note the Sender has no incentive to deviate

given that the messages they send induce the same distribution over actions at each state

as in σ. Furthermore, we can show that this strategy is still optimal for the Receiver.
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When the Receiver observes [m] maximizes of a ∈ A the following

Eθ∼µ0 [uR(a, θ)|[m] = σ′(θ)] =
∑
θ

P(θ|[m] = σ′(θ))uR(a, θ)

=
∑
θ

σ′([m]|θ)µ(θ)∑
θ′ σ

′([m]|θ′)µ(θ′)
uR(a, θ)

=
1∑

θ′ σ
′([m]|θ′)µ(θ′)

∑
θ

σ′([m]|θ)µ(θ)uR(a, θ)

=
1∑

θ′ σ
′([m]|θ′)µ(θ′)

∑
θ

∑
m′∈[m]

σS(m
′|θ)µ(θ)uR(a, θ)

=
1∑

θ′ σ
′([m]|θ′)µ(θ′)

∑
m′∈[m]

∑
θ

σS(m
′|θ)µ(θ)uR(a, θ)

Observe that for each θ where σS(m
′|θ) > 0, because σ satisfied Receiver optimality, then

for all a ∈ σR(m
′) it is that a ∈ argmax

∑
θ σS(m

′|θ)µ(θ)uR(a, θ). Hence σ′([m]) satisfies

Receiver optimality.

Hence we can assume with loss of generality that every message sent with positive

probability in a PBE σ induces a different distribution over actions. Now assume for

contradiction that there are at least three messages in the support of σS (across all θ).

Let them be σR(mi). Let θ be some state such that Sender sends some message m̂ with

positive probability and σR(B|m̂), σR(N |m̂) > 0. This must exist as there only two actions

and at least three distributions. Given that the distributions are distinct, let us rank the

distributions as σR(B|mi) > σR(B|mj) if i < j. Note that m̂ = mi for i > 1. Because

the Sender has strict preferences, assume with loss that they prefer B to N at state θ.

Furthermore, because there only two actions, the Sender at θ always prefers distributions

over actions with higher probability on B than with lower probability. Hence the Sender

strictly prefers σR(m1) over all σR(mi) for i > 1. As such, the Sender at θ has an incentive

to deviate from sending message m̂ with positive probability to sending message m1 with

probability 1. This is a contradiction with σ being a PBE. Thus it must be that σ uses at

most two messages.

D Proof of Theorem 4

If every signal distribution is the same, i.e., the σS(θ1) = σS(θ2) = σ̂ ∈ ∆(M), then this

gives the babbling payoff since µ0(θ|m) = µ0(θ) for all θ ∈ Θ and messages m ∈ M sent
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with positive probability. Let Mi = suppσS(θi). Now we consider the following cases:

the support of each signal distribution has a non-overlapping point each, one support is a

subset of the other, or the support is the same. Define a∗R(θi) = argmaxa∈A uR(a, θi) and

δ(x) refers to a Dirac distribution with probability 1 on x.

In the first case, we have that there exists m1 ∈ M1 − M2 and m2 ∈ M2 − M1. This

leads to the posterior µ(θi|mi) = 1, hence the Receiver takes the optimal action for θi:

σR(mi) = δ(aR(θi)). There are two possible cases, either aR(θi) are the same or not. If

they are different, then for j ̸= i we have that aR(θi) ≻
θj
S aR(θj). Hence there is a profitable

deviation for the Sender at θ1 and θ2. If they are the same then in every state of the world

the ex-post Receiver optimal outcome is the same. Thus the babbling outcome is the same.

In the second case, we have that without loss M2 ⊂ M1. Consider m1 ∈ M1 − M2.

Thus µ(θ1|m1) = 1, and σR(m1) = δ(aR(θ1)). Now we have that either for all m2 ∈ M2,

σR(m2) = δ(aR(θ1)) or not. In the former case, we have a contradiction by Lemma 2

since there is only one action distribution taken in PBE. If the latter case, then for some

m2 ∈ M2, there exists a ∈ suppσR(m2) such that a ̸= aR(θ1). Thus Ea∼σR(m2)uS(a, θ1) >

uS(aR(θ1), θ1) since the Sender’s preferences are strict and aR(θ1) is the worst outcome for

the Sender by anti-coordination. Thus there is a profitable deviation for the Sender at θ1.

Now consider the case where M1 = M2 = M . Recall that we have already considered

the case where the at each state the Sender has the same strategy. Thus we can consider

the Sender to have different strategies at each state. Since there are only two states, there

exists m1,m2 such that for j ̸= i µ0(θi|mi) > µ0(θi) and µ0(θj|mi) < µ0(θj).

As such, we have that σR(mi) ⪯θi
S σR(mj) for all i ̸= j. To see why, consider the

following intuitive lemma:

Lemma 4. If a(α) ∈ argmaxx∈A αu(x) + (1 − α)v(x) for α ∈ (0, 1], then α ≥ α′ implies

that u(a(α)) ≥ u(a(α′)).

Proof. Let α ≥ α′ such that α > 0, and let a = a(α) and a′ = a(α′).Assume for contra-

diction that u(a′) > u(a). By optimality of a and a′ for α and α′ respectively, we have

that

α(u(a)− u(a′)) + (1− α)(v(a)− v(a′)) ≥ 0

α′(u(a′)− u(a)) + (1− α′)(v(a′)− v(a)) ≥ 0

Because α ≥ α′, the last equation is such that α(u(a′)− u(a)) + (1−α′)(v(a′)− v(a)) ≥ 0.

Adding this to the first equation gives (v(a)−v(a′))(a′−a) ≥ 0. Hence we have that v(a) ≤
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v(a′). This gives the following contradiction: αu(a′)+(1−α)v(a′) > αu(a)+(1−α)v(a).

Thus we have that for all ai ∈ suppσR(mi), we have that uR(ai, θi) ≥ uR(aj, θi). By the

perfect misalignment structure on preferences, we have that uS(ai, θi) ≤ uS(aj, θi). Since

this is true for all elements of the support, it must be that σR(mi) ⪯θi
S σR(mj) for all i ̸= j.

If for some ai, aj we have that uR(ai, θi) > uR(aj, θi), then uS(ai, θi) < uS(aj, θi). Thus

we have a profitable deviation by the Sender at θi to mj since σR(mi) ≺θi
S σR(mj) for all

i ̸= j. Hence we can assume that uR(ai, θi) = uR(aj, θi), meaning that σR(m1) ∼θi
R σR(m2)

for all i. Note that this has to be true for all m1,m2 ∈ M . As such we can pick some m1

since the Receiver is indifferent between all messages at every state:

max
a∈A

Eθ∼µ0uR(a, θ) ≤ Eθ∼µ0Em∼σS(θ)Ea∼σR(m)uR(a, θ)

= Eθ∼µ0Em∼σS(θ)Ea∼σR(m1)uR(a, θ)

= Eθ∼µ0Ea∼σR(m1)uR(a, θ)

≤ max
a∈A

Eθ∼µ0uR(a, θ).

Hence the Receiver receives a babbling utility.

E Proof of Proposition 1

First we show that the Receiver mixes on path. Let σ be an informative PBE. Assume for

contradiction that for all states θ ∈ Θ and m ∈ M such that σS(m|θ) > 0, we have that

σR(m) = δ(a) for a ∈ A. Since σ is an informative PBE, we have that there is somemB and

mN that induce αB and αN as in Lemma 2. Note that αB ̸= αN . By assumption that there

is no mixing and that σ is informative, we have that αa = δ(a) for a ∈ A. Without loss of

generality, let B be an action played in a babbling PBE σ0. By perfect misalignment, the

Receiver either takes the babbling action or some action that is optimal for the Sender,

hence it is strictly worse for the Receiver. Thus σ ≺R σ0, which is a contradiction as all

PBE must be ex-ante weakly better for the Receiver than babbling. Thus the assumption

that the Receiver does not mix in a PBE is false.

Now we show that Sender pools in all states. Assume for contradiction that there

is a state θ that does not pool in a PBE σ. Let Mθ = supp(σS(θ)). Given this, we

have that Mθ ∩ ∪θ′ ̸=θMθ′ = ∅. Thus ∀m ∈ Mθ, µ(θ|m) = 1. By perfect misalignment

of the preference profile, σR(m) = δ(aθ), where aθ = argmina uS(a, θ). Since this is a
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non-babbling PBE, there must exist m′ such that σR(m
′) ̸= σR(m). If a is the worst

action for θ, and preferences are strict, then σR(m
′) ≻θ

S σR(m). Furthermore m′ ̸∈ Mθ as

∀m1,m2 ∈ Mθ, σR(m1) ∼θ
S σR(m2). Thus there is a profitable deviation by the Sender at

θ from σS(θ) to δ(m′). This contradicts σ being a PBE.

F Additional Examples

Prior L M R
2
3

θ1 1, 3 2, 2 0, 0
1
3

θ2 −6, −3 0, 0 −10, 2

Figure 19: Example of PBE not being Pareto ranked in a game with |Θ| = 2.

Example 8. Figure 19 provides a binary state example that, similar to Figure 5, illustrates

how some of the claims in Theorem 7 no longer hold when the set of actions are no longer

binary. △

G Proof of Theorem 5

Note the following observation:

Observation 8. A preference profile is weakly misaligned if and only if it satisfies one of

the following: (BB,BN), (NB,NN), (BB,BN,NB), (BB,BN,NN), (BN,NB,NN),

(BB,NB,NN), (BB,BN,NB,NN).

First we prove part 1 and 2 of Theorem 5. First note that by a similar argument to

Lemma 1, to show some condition ∅ ≠ C ⊆ {BB,BN,NB,NN}, we only need to show it

true for the case where |Θ| = |C|. Furthermore, we can scale utilities by µ0(θ) as needed,

so we can assume uniform priors. See Figures 21 and 22 for the example profiles of utility

functions that satisfy the various cases required by a preference being weakly misaligned,

and note that the other cases follow by symmetry.

Now we prove part 3 of Theorem 5. Note that we only need to consider the follow-

ing cases, as per the previous observation: BB, BN , NB, NN , (BB,NN), (BB,NB),

(BN,NN). We can also see that the following cases are handled by Proposition 5, since

for all posteriors the optimal action by the Receiver is identical: BB, BN , NB, NN ,
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Prior L M
1
2

θ1 1, 0 0, 1
1
2

θ2 0, 10 1, 0

(a) Single babbling.

Prior L M
1
2

θ1 1, 0 0, 1
1
2

θ2 0, 1 1, 0

(b) Continuum of babbling.

Prior L M
1
2

θ1 1, 1 0, 0
1
2

θ2 0, 0 1, 2

(c) One babbling, one ex-
post.

Prior L M
1
4

θ1 1, 2 0, 0
1
4

θ2 1, 0 0, 1
1
4

θ3 0, 1 2, 0
1
4

θ4 0, 0 1, 2

(d) Babbling continuum +
ex-post (improvement for R).

Prior L M
1
2

θ1 1, 1 0, 0
1
2

θ2 1, 1 0, 0

(e) Babbling is ex-post.

Prior L M
1
4

θ1 1, 1 0, 0
1
4

θ2 1, 0 0, 1

(f) Babbling continuum up to
expost but same for receiver.

Prior L M
1
4

θ1 1, 1 0, 0
1
4

θ2 1, 0 0, 1
1
4

θ3 0, 1 2, 0
1
4

θ4 0, 0 1, 1

(g) Continuum babbling +
continuum informative but
same for receiver.

Prior L M
1
4

θ1 1, 1 0, 0
1
4

θ2 1, 0 0, 1
1
4

θ3 0, 1 2, 0
1
4

θ4 0, 0 1, 2

(h) Single babbling + con-
tinuum informative but same
for receiver.

Figure 20: Games that achieve the PBE payoff profiles in Figure 17.

(BB,NB), (BN,NN), (BN,NB). Hence a babbling PBE would implement the same

outcome as any BPE.

The remaining case is (BB,NN). By Proposition 7, we can observe that truth-telling

by the Sender results in a unique response by the Receiver, where both agents get their

preferred action in every state of the world. This would be the unique BPE, which is also

a PBE.

H Dispute Resolution

This section studies the processes of arbitration, mediation and negotiation from Golts-

man et al. (2009) within our model, giving proofs of results in the main text. In models

with a third-party, we will refer to said third-party via the pronoun “they”. Fix a game
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B N

θ1 10, 1 0, 0
θ2 1, 0 0, 2

(a) (BB,BN)

B N

θ1 100, 0 0, 3
2

θ2 0, 1 1, 0

(b) (BN,NB)

B N

θ1 10, 1 0, 0
θ2 1, 0 0, 10
θ3 0, 1 1, 0

(c) (BB,BN,NB)

B N

θ1 1, 1 0, 0
θ2 0, 0 10, 1
θ3 0, 2 1, 0

(d) (BB,NN,NB)

B N

θ1 1, 2 0, 0
θ2 1, 0 0, 1
θ3 0, 0 20, 1
θ4 0, 2 1, 0

(e) (BB,NN,NB,BN)

Figure 21: Examples for proof of Part 1 of Theorem 5.

B N

θ1 1, 2 0, 0
θ2 2, 0 0, 1

(a) (BB,BN)

B N

θ1 1, 0 0, 1
θ2 0, 1 1, 0

(b) (BN,NB)

B N

θ1 2, 3 0, 0
θ2 2, 0 0, 1
θ3 0, 1 1, 0

(c) (BB,BN,NB)

B N

θ1 1, 1 0, 0
θ2 0, 0 1, 3
θ3 0, 1 1, 0

(d) (BB,NN,NB)

B N

θ1 1, 3 0, 0
θ2 1, 0 0, 1
θ3 0, 1 1, 0
θ4 0, 0 1, 3

(e) (BB,NN,NB,BN)

Figure 22: Examples for proof of Part 2 of Theorem 5.

(Θ,M,A, µ0, u). We denote the neutral third party via J for judge. A strategy by the

Judge is σJ : Θ → ∆(A).

H.1 Arbitration

σJ is an optimal arbitration rule (OAR) if it solves the following:

max
p:Θ→∆(A)

Eθ∼µ0Ea∼p(θ) [uR(a, θ)]
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subject to

θ ∈ argmax
θ̂∈Θ

Ea∼p(θ̂) [uS(a, θ)] (Sender-IC)

Remark 1. This is equivalent to the definition of arbitration in Goltsman et al. (2009).

An OAR can be interpreted as a solution whereby the Sender is truthful, and the

Receiver commits to an action strategy before observing the message. When comparing

between OAR and PBE, we compare their ex-ante payoff profiles. Note that following

observation:

Observation 9. Fix σJ an OAR and σ0 a babbling PBE. Then σJ ⪰R σ0.

We say that σJ is a babbling if for all θ, θ′ ∈ Θ, σJ(θ) = σJ(θ
′). Otherwise it is

informative. Note that σJ a babbling OAR induces the same ex-ante payoff profile as some

babbling PBE. Furthermore, if such a babbling OAR exists, then any babbling PBE has a

corresponding babbling OAR with the same payoff profile.

First we show the following result:

Theorem 8. Fix an environment ... TODO: formal. Then the following are true:

1. σJ is an informative OAR if there exists αB, αN ∈ ∆(A) such that αB(B) > αN(B)

and if θ ∈ Θ such that a ≻θ
S a′ for a, a′ ∈ A, then σJ(θ) = αa.

2. σJ is an OAR iff it induces (αB, αM) that our solutions to the following optimization

problem:

max
αB ,αN∈∆(A)

∑
a,a′∈A

Eθ∼µ0 [Ea∼αauR(a, θ)|θ ∈ Θaa′ ]µ0(Θaa′)

subject to αB(B) ≥ αN(B). Furthermore, it is an informative OAR iff solves the

above optimization without the constraint binding, i.e. αB(B) > αN(B).

3. A Sender-preferred OAR σJ gives payoff profile u∗ or u0, where u∗ corresponds to the

Sender-optimal payoff profile and u0 is the of payoff profile of the Sender-preferred

babbling equilibrium.

4. If the profile of utility functions u is consistent with a preference profile ≻ that is not

aligned, then all σJ are babbling OARs.
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5. If there exists an informative PBE, then σJ induces the utility profile u∗.

6. If the profile of utility functions u is consistent with a preference profile ≻ that is

aligned, but there are no informative PBE, then σJ is a babbling OAR.

Proof. First, consider the claim that an informative OAR induces two distributions. Since

σJ is not babbling, then there must be θ, θ′ ∈ Θ, σJ(θ) ̸= σJ(θ
′). It can’t be that θ, θ′ ∈

Θa
S for some a ∈ A. If it were, then we can assume with loss that σJ(θ) ≻θ′

S σJ(θ
′).

Hence the Sender at θ′ has a profitable deviation to report θ, which violates the incentive

compatibility constraint. Now assume for contradiction that there is θ̃ ∈ Θ such that

σJ(θ̃) ̸= σJ(θ), σJ(θ
′). Since preferences are strict, we can assume without loss that θ, θ̃ ∈

Θa
S for some a ∈ A. By the same reasoning as before, there is a profitable deviation for

either θ or θ̃. Thus any action distribution induced by a state is either σJ(θ) or σJ(θ
′).

Since these action distributions are distinct, for each a ∈ A, we can define αa = σJ(θ)

if θ ∈ Θa
S. As before, we require that there is no incentive for the Sender to misreport,

hence it must be that αB(B) ≥ αN(B). Furthermore, they can’t be the same since σJ is

informative, so this inequality holds strict. This completes the proof.

Second, consider the claim that an OAR can be characterized as the solution to an

optimization problem with respect to (αB, αN). Let p be an OAR. First observe that if

θ, θ′ ∈ Θa
S for some a, then it must be that p(θ) = p(θ′). Otherwise, without loss of

generality, we would have that p(a|θ) > p(a|θ′). This contradicts Sender-IC, as the Sender
at θ′ would report θ. Hence for all a ∈ A there is αa such that for all θ ∈ Θa

s , p(θ) = αa.

We can rewrite our objective by conditioning on Θa
S, as the distribution over actions is

identical:

Eθ∼µ0Ea∼p(θ) [uR(a, θ)] =
∑
a∈A

Eθ∼µ0

[
Ea∼p(θ)uR(a, θ)|θ ∈ Θa

S

]
µ(Θa

S)

=
∑
a∈A

Eθ∼µ0 [Ea∼αauR(a, θ)|θ ∈ Θa
S]µ(Θ

a
S)

Furthermore, we can note that the Sender at θ ∈ Θa
S pick θ that induces the highest p(a|θ).

As there are only two strategies played, it will report θ iff αa(a) ≥ αa′(a) for a′ ̸= a. For

a′, the analogous condition is αa′(a′) ≥ αa(a′), but we can observe that this is if and only

αa(a) ≥ αa′(a) because αa(a) = 1 − αa(a′) as there are only two actions. Hence we just

need one of these conditions, giving us the optimization problem we wanted to show.

Third, consider the claim that a Sender-preferred OAR gives either payoff profile u∗ or

u0. Let va(a
′) = Eθ∼µ0 [uR(a

′, θ)|θ ∈ Θa
S]µ(Θ

a
S). We consider the following cases.
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• vB(B) ≥ vB(N), vN(B) ≥ vN(N): We can (weakly) increase utility by having

αB(B) = 1. If vN(B) > vN(N) we can increase utility by having αN(B) = 1,

inducing u0. If vN(B) = vN(N), we can induce u∗ by having αN(N) = 1.

• vB(B) ≥ vB(N), vN(B) < vN(N): We can (weakly) increase utility by having

αB(B) = αN(N) = 1, thus inducing u∗.

• vB(B) < vB(N): We can (weakly) increase utility by having αB(B) = αN(B). Since

the constraint binds, this corresponds to a babbling OAR that induces u0.

Since this comprises of all possible cases, we’ve proven our claim.

Fourth, consider the claim that a profile of utility functions that are consistent with a

preference profile that is not aligned induces only babbling OAR. Given that the preference

profile is not aligned, we can find a ∈ A such that for some a′ ∈ A, a ≻θ
S a′ ⇐⇒ a′ ≻θ

R a.

As such, for all θ ∈ Θa
S, uR(a

′, θ) > uR(a, θ). Thus it must be the case that va(a
′) > va(a).

Assume without loss of generality that a′ = N and a = B. Then it cannot be the case

that αB(B) > αN(B), because the objective of the optimization problem can be strictly

improved by having αB(B) = αN(B). This corresponds to a babbling OAR.

Fifth, consider the claim that if there exists an informative PBE, then the OAR σJ

induces u∗. Recall from part 2 of Theorem 3, this implies there exists a PBE that induces

u∗. Observe that all PBE are feasible solutions to the optimization problem at hand. Hence

the Receiver’s ex-ante utility must be at least u∗
R. Given our previous result that only u0

or u∗ can be induced as payoff profiles from an OAR in general, it must be that u∗ is the

payoff profile induce in all OAR in this case.

Finally, consider the claim that a profile of utility functions that are consistent with a

preference profile that is aligned but only admits babbling PBE must only induce babbling

OAR. Assume for contradiction the OAR is not babbling, hence it must induce payoff profile

u∗. Let (αB, αN) be the corresponding strategy distributions for the OAR. Consider the

following strategy profile σ = (σS, σR):

∀a ∈ A , θ ∈ Θa
S =⇒ σS(θ) = δ(ma)

∀a ∈ A , σR(ma) = δ(a)

where mB ̸= mN . This must not be a PBE, since if it were then there is an informative

equilibrium and thus a contradiction. Since it satisfies Sender optimality, it must not
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satisfy Receiver optimality. Hence, without loss of generality, the following holds:

Eθ∼µ0

[
uR(B, θ)|θ ∈ ΘN

S

]
> Eθ∼µ0

[
uR(N, θ)|θ ∈ ΘN

S

]
=⇒ vN(B) > vN(N)

Note that αN(B) < αB(B) since this OAR is not babbling, yet by the above the Receiver

can improve their payoff by increasing αN(B) while maintaining the Sender-obedience

constraint αN(B) ≤ αB(B). This contradicts the optimality of (αB, αN) for the OAR,

hence it can’t have been that the OAR was babbling.

Corollary 3. Consider a Sender-preferred OAR σJ and a payoff profile ū that it induces.

Then there is a PBE σ that induces ū.

Proof. Let u be a profile of utility functions consistent with a preference profile ≻. If ≻ is

not aligned, by the previous theorem we have that all OARs are babbling. Clearly there

is some PBE that induces the same payoff ū. If ≻ is aligned but induces only babbling

PBE, then all OAR are also babbling. Thus we get the same conclusion as before. If ≻
is aligned and induces an informative PBE, then there is a PBE and σJ that induces u∗.

The latter holds by the previous theorem, and the latter holds by part 2 of Theorem 3.

Since this considers all possible cases, then all OAR induce a payoff profile that can also

be induced by some PBE.

H.2 Mediation

σJ is an optimal mediation rule (OMR) if it solves the following:

max
p:Θ→∆(A)

Eθ∼µ0Ea∼p(θ) [uR(a, θ)]

subject to

θ ∈ argmax
θ̂∈Θ

Ea∼p(θ̂) [uS(a, θ)] (Sender-IC)

and for all a ∈ A such that Eθ∼µ0 [p(a|θ)] > 0,

a ∈ argmax
a′∈A

Eθ∼µ0 [uR(a
′, θ)|p(θ) = a] (Obedience)

An OMR solves a similar optimization problem to an OAR except with an additional
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obedience constraint that ensures that the Receiver his willing to follow the prescribed

strategy. The interpretation is that there is a mediator who offers a recommendation

to the Receiver of what action to take, hence via a revelation principle argument, it is

without loss of generality to consider strategies that ensure the Receiver is willing to follow

the recommendation.

Observe the following relationship between PBE, OMR and OAR:

Proposition 13. Let σPBE, σOMR, and σOAR be any PBE, OAR, and OMR solution re-

spectively. Then σPBE ⪯R σOMR ⪯R σOAR.

Proof. Observe that σOMR is a feasible solution to the optimization problem for a OAR,

hence we must have that σOMR ⪯R σOAR. We proceed by showing that σPBE ⪯R σOMR.

First consider the case that there are only babbling PBE in our environment. Observe that

babbling OMR, defined similarly to babbling OAR, gives the Receiver the same utility as

a babbling PBE. Hence, in such a case, σPBE ⪯R σOMR. On the other hand, consider

the case that there is an informative PBE. By part 2 of Theorem 3, we know there exists

σ∗ = (σ∗
S, σ

∗
R) that induces the payoff profile u∗. Note that σ∗ can be written as follows:

∀a ∈ A,

θ ∈ Θa
S =⇒ σ∗

S(θ) = δ(ma)

σ∗
R(ma) = δ(a)

where mB,mN ∈ M and mB ̸= mN . Now define σJ : Θ → ∆(A) as follows:

σJ(θ) = Em∼σ∗
S(θ)

[σ∗
R(m)]

Note that for a ∈ A and θ ∈ Θa
S, σJ(θ) = δ(a), hence this clearly satisfies the Sender’s

incentive constraint. Furthermore, we have that

µ0(θ|σJ(θ) = a) =
µ0(θ)

µ0(Θa
S)

· 1{θ ∈ Θa
S} = µ0(θ|σ∗

S(θ) = ma)

Hence the Receiver’s optimality criterion in a PBE is the same as the obedience constraint

in an OMR. Given that the former is satisfied by assumption, then so is the latter. Hence

σJ satisfies the constraints of the optimization problem for an ORM. Observe that σJ also
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gives the Receiver the same ex-ante payoff as σ∗:

Eθ∼µ0

[
Ea∼σJ (θ)uR(a, θ)

]
= Eθ∼µ0

[∑
a∈A

uR(a, θ)σJ(a|θ)

]

= Eθ∼µ0

[∑
a∈A

uR(a, θ)Em∼σ∗
S(θ)

[σ∗
R(a|m)]

]

= Eθ∼µ0Em∼σ∗
S(θ)

[∑
a∈A

uR(a, θ)σ
∗
R(a|m)

]
= Eθ∼µ0Em∼σ∗

S(θ)
Ea∼σ∗

R(m) [uR(a, θ)]

Observe that the Sender also has the same ex-ante payoff in σJ as in σ∗. Because an ORM

maximizes the Receiver’s ex-ante utility subject to certain constraints, and σJ is a feasible

solution, we have that σOMR ⪰R σJ ∼R σ∗. Thus in either case, σORM ⪰R σPBE given that

the σ∗ ⪰R σ for all σ PBE, which follows by Theorem 3. This concludes the proof.

Corollary 4. Consider a Sender-preferred OMR σJ and a payoff profile ū that it induces.

Then there is a PBE strategy profile and OAR strategy that induces ū.

Proof. Observe from the previous result that OAR give the same utility profile as some

PBE, hence OAR, OMR and such a PBE must give the same Receiver utility by the

previous proposition. When there is an informative PBE, we saw that u∗ could be induced

by a feasible mediation strategy. Since the best Receiver payoff for OMR is u∗
R, then the

Sender-preferred OMR induces u∗. When there is no informative PBE, then the OMR

gives the Receiver a babbling payoff. For contradiction, assume that the Sender receives

a strictly higher payoff in the OMR then that in the Sender-preferred OAR. Given that

feasible mediation rules are also feasible for arbitration, then this would be a contradiction

to Sender-preferredness of the OAR rule as there is an arbitration rule that gives the same

payoff to the Receiver but strictly higher payoff to the Sender.

H.3 Negotiation

The model of negotiation in Goltsman et al. (2009) is the same as that in Aumann and

Hart (2003). Let T ∈ N ∪ {∞} be the (possibly infinite) time horizon, and MS and MR

the space of messages that the Sender and Receiver can send, respectively. Consider an

extensive form game where the state of the world is revealed at time 0 to the Sender,
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and the Sender and Receiver simultaneously send messages from their respective message

spaces to one another.

Proposition 14. Let σPBE, σOMR, σOAR, and σONR be the Sender-preferred PBE, OAR,

OMR, and ONR solution respectively. They all induce the same payoff profile, which is u∗

if there is an informative PBE, and the Sender-preferred babbling PBE otherwise.

Proof. Observe that by the previous results, σPBE ∼i σ
OMR ∼i σ

OAR for all i ∈ {S,R}.
We proceed by showing that σPBE ⪯i σ

ONR ⪯i σ
OAR for all i ∈ {S,R}, thus proving the

desired result.

First we show that this holds for i = R. Note that by choosing τ = 1 and MS =

MR = M , then P = (τ,MS,MR) represents the same game as the original cheap talk

model. Given that the third party is maximizing the payoff of the Receiver, and all σPBE

are feasible strategies with respect to P , then σNeg ⪰R σPBE. Furthermore, for any P , let

σ : Θ → A be the distribution over actions induced by σNeg. We can observe that this is a

feasible arbitration strategy. If this did not hold, that is the Sender-IC constraint failed,

that means that the Sender at state θ has a profitable deviation by reporting some θ′ ̸= θ.

However this would mean that in negotiation, the Sender would also have a profitable

deviation to pretend the state is θ′. This contradicts σONR is an equilibrium. Thus it must

be that σOAR ⪰R σONR. These same arguments apply for the Sender. We can conclude

from this that σPBE ∼i σ
ONR ∼i σ

OAR for all i ∈ {S,R}.

Note that we can also show that σONR is also feasible mediation strategy, though this

is not required for the proof.
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