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Abstract

This paper develops a general model of paired donor exchange that integrates

multiple donation technologies. Through integration, we are able to enrich the set

of potential patient-donor matches over benchmark models while reducing the ag-

gregate risks placed on donors. Under reasonable assumptions of risk preferences

that hold in a range of settings, a pairwise exchange mechanism that exhibits various

desirable qualities, such as efficiency, stability and strategy-proofness, is constructed.

The strength of this mechanism lies in allowing lower risk donations to be under-

taken when possible. This mechanism can be applied to the integration of multiple

organ exchanges, kidney exchange with desensitization, and exchange with multiple

donors under observable risk. We complement the latter application with a more

general study without observability assumptions, finding positive results for three-

way exchanges under mild assumptions. To showcase the benefits and challenges of

integration, a case-study of kidney-liver exchanges is provided. In particular, theo-

retical results on welfare improvement guarantees over non-integrated exchanges are

shown, as well as impossibility results when certain model assumptions are weakened.

In simulation using Korean patient population data, it is further demonstrated that

there approximately is an 10-20% relative increase in transplants over the baseline

that varies with the proportion of risk-tolerant donors.
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1 Introduction

For patients suffering from organ failure, such as renal or liver failure, transplantation from

a willing donor is an effective means of improving the patient’s life expectancy. However,

a key concern is in the donors’ health, which can be negatively affected by undergoing the

transplant procedure. As such, it is of utmost importance for doctors to ensure that risks

and benefits are appropriately balanced and agreed upon by both parties. As opposed to

direct donation, which relies on willing and compatible donors, when patients have willing

but incompatible donors, paired donor exchange has emerged as a means to take advantage

of a coincident of wants : when there are two pairs in such a situation, but the patient of

each pair is compatible with the donor of the other pair, then they can exchange donors

and undergo their respective operations.

This setting has been well studied for exchanges in many specific organ markets, such

as for kidneys (Roth et al., 2005), livers (Ergin et al., 2020) and lungs (Ergin et al., 2017).

Yet in practice, it is possible to allow for exchanges across these markets (CMU, 2019). For

example, consider allowing a pair that requires a kidney donation and pair that requires a

liver donation, to exchange donors who then donate different organs. By allowing donors

to donate organs different than what their patient requires, this can increase the number

of compatible donors for that patient and thus allow for more transplant occur. Though

this has been done in the real world, there is no centralized mechanism that allows for such

an option. Rather than force search costs onto pairs, we propose developing an exchange

that integrates multiple modes of donations, such as both kidney and liver donation, into

a single paired exchange.

Furthermore, donors whose only options were to undergo riskier transplants in order

for their patient to receive a new organ now have more options available to them. In the

case of kidneys and livers, the latter is a riskier donation both in mortality and morbidity.

Consider a kidney patient whose donor is willing to donate either a kidney or liver, but

there is no other kidney patient they can be matched with. As well, there is a liver patient

whose donor can donate either organ, and they have the option of being matched in an

exchange with a kidney or liver patient. In this case, we can reduce unnecessary risks

to the liver patient by matching them with kidney patient. Though the latter is taking

on a greater risk than the former, it is the only available option to them. By combining

exchanges, we have the option of limiting donor risks through such trades.

This paper takes a market design approach to implementing paired exchange across

different modes of donation. That is, by identifying a coincidence of wants with different
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gives through integrating new types of donation, such as different modes of donating a

certain organ as well as donating different organs, how can we design desirable mechanisms.

We take a unifying perspective on these problems by creating an abstracted model and

showing it’s application to various domains under different assumptions. The literature

has largely studied how to design organ exchanges for specific organ pools, yet different

organs can introduce unique challenges. For example, liver exchanges can allow for two

modes of transplants: left and right lobe transplant (Ergin et al., 2020). Both modes of

transplants require blood type and size compatibility, just as in a kidney transplant, but

since right lobes are bigger than left lobes, it increases the donation opportunities for the

recipient. However, right lobe transplants are riskier than left lobe transplants for donors,

and thus pairs may have different levels of risk they are willing to undertake. This can

lead to non-trivial incentives issues that relate to truthful reporting of a pair’s willingness

to undergo different donation modes. Similar, due to improvements in medical technology,

the standard model of kidney exchange that typically has a single mode of donation can be

expanded. Andersson and Kratz (2020) studies the use of immunosuppressant technology

to allow patients to be compatible with any patient. This can be seen as a new donation

mode, and as emphasized in their work, this mode is less desirable to receive than being

matching with an already compatible donor.

A key insight is that many risks are objective. For example, it is well known that

the morbidity and mortality risk of the operations are ordered by kidney, left-lobe liver

and right-lobe liver. Furthermore, the immunosupressant studied in Andersson and Kratz

(2020) is non-toxic, and under the assumption that the cost is sufficiently moderate, it

is reasonable to assume that taking an immunosuppressant and being matched with a

incompatible donor as a patient is less preferred than a compatible match. Hence we can

leverage these assumptions on the commonality of preferences when designing mechanisms.

The main piece of private information is willingness level, that is at what point is a modality

too risky.

The existence of risks across different types of donations points to another social ob-

jective, that is to reduce the risk undertaken by donors by allowing patients to still receive

their needed organ while their donor donates via a less risky mode. Integrating these mar-

kets has the dual purpose of increasing the number of transplants while reducing aggregate

donor risks, hence careful design is required such that both welfare improvements can be

achieved alongside common market design objectives such as efficiency, weak-core stabil-

ity, strategyproofness and individual rationality. A mechanism that satisfies these former
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objectives across a range of environments will be referred to as desirable.

In the context of organ exchanges, limitations on cycle size are also vital for practical

implementation. To see why, first note that there cannot be legal enforcement of organ

exchanges when one donor has already fulfilled their obligation in an exchange when the

other hasn’t. As such, all donors and patients in an exchange must have simultaneous

surgeries. Due to the practical and technical complexity of many simultaneous exchanges,

it is more feasible to prioritize pairwise exchanges. That is, exchanges involving only two

patient-donor pairs.

We begin our exploration by studying dual-mode exchanges, and propose a condition

called weak acyclicity, a necessary but not sufficient condition for acyclicity in Ergin et al.

(2020), that allows their mechanism to be applied in novel settings. In particular, we show

this condition applies to kidney donation with a) immunosuppressant technology, and b)

two donors. We identify a partial converse result that shows when the existence of certain

cycles determines that desirable mechanisms are impossible to construct. We show how

this result applies to dual-donor liver exchange.

We then study how to develop mechanisms for more general multi-modal exchanges.

We identify an ideal property of a compatibility graph that strengthens the notion of

acyclicity in Ergin et al. (2020), which we term separability. We find that this creates a

structural decomposition within the space of modalities, and allows us to develop simple

algorithms for multi-modal exchanges. When a multi-modal environment is not completely

acyclic, but satisfies such properties in a certain partitional sense, we show that if there

are desirable mechanisms for each element of a partition of the modality space, then we

can create a modular meta-mechanism that retains the desirable properties if preferences

on modalities are common. The promise of this approach lies in settings with arbitrary

organs and transplant modalities with an underlying common preference restriction, which

can be used to model the integration of exchanges for different organs. As new modes

of organ donation are developed in the medical field, both in existing organ exchanges

and potentially new ones, having a mechanism that can seamlessly integrate desirable

mechanisms specific to each exchange into a single desirable mechanism for the whole

exchange allows our approach to be robust to future technological advances. Though it is

clear that market integration can have positive welfare effects in this context, the idea that

mechanisms specific to each market can be combined to form a new desirable mechanism

is novel.

This property naturally emerges when integrating different organ exchanges. An ap-
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plication of key interest is the simple but practical model of integrating kidney and liver

exchanges, hence we provide an in-depth qualitative analysis of our solution in this setting.

We first study the setting without right-lobe donation technology, where our mechanism

generalizes the work of Watanabe (2022), and our solution applied to the same setting

is structurally simpler and intuitive. Our theoretical results leverage the commonality of

preferences to prove that our mechanism has various desirable properties.

To emphasize the importance of the assumptions within our problem and the implicit

qualities of our solution, namely the existence of a common risk preference and the necessity

of prioritizing based on organ risk, we then present two impossibility results. First, we

find that when preferences can be arbitrary, it is impossible to find a desirable pairwise

exchange. Secondly, we consider whether it is possible to find a desirable mechanism that

is neutral to the labelling of a group of patients as being kidney or liver patients. This

alludes to a notion of fairness in treatment of different patient group that is absent from

our proposed mechanism due to its prioritization structure. We find that it is impossible

to construct such a pairwise exchange mechanism.

To characterize any welfare improvements over the status quo baseline, that is pairwise

matchings in each organ exchange independently, we characterize two metrics. One is

the number of transplants sustained in a matching, and another is the distribution of

transplant types (kidney or liver) for patients matched in the baseline. We show that on

both dimensions, we can find a priority order such that our mechanism weakly improves on

the status quo. We complement this with simulation results that quantify, using Korean

patient data, anticipated gains from integrating the exchanges across various assumptions

on risk-tolerance of patients. We find, across such tolerances, anywhere from a 10 to 20

percent relative increase in the number of transplants over the baseline.

We complement our general analysis of multi-modal environments with common pref-

erences by exploring kidney exchange with multiple donors but without any preference

assumptions. We provide a negative result when restricted to pairwise exchanges, but a

positive result for three-way exchanges under some mild assumptions on the population of

distribution of agents.

Outline. This paper is organize as follows. Section 2 describes the general model con-

tained within this paper, as well as our desiderata and domain-specific background. Section

3 provides theoretical characterization of exchanges with two donation modes, specifically

kidney donation with desensitization (Section 3.1.1 and two risk-ordered donors 3.1.2. Sec-
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KE w/ Desensitization (S3.1.1) Two Risk-Ordered Donors (S3.1.2)

Kidney Exchange Liver Exchange
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Risk-Ordered Modes (S4.1)

Separable (S4.1.1) Partition Separable (S4.1.2)

KE w/ Multiple Donors (S4.2.1)

Larger Exchanges

KE w/ Multiple Donors (S4.2.2)

Figure 1: Diagram of Results and Applications. Result type: positive and negative.

tion 4 studies specific environments with more than two modes, providing results on risk-

ordered integration of exchanges (Section 4.1) and kidney exchange with multiple donors

(Section 4.2.2). Section 5 provides an in-depth analysis of the integrating kidney and liver

exchanges in particular, with a focus on existence and uniqueness of desirable mechanisms

as well as a welfare analysis. Section 6 provides a simulation analysis of integrating kidney

and liver markets. Our theoretical results are summarized in Figure 1.

1.1 Related Literature

Kidney Exchange. The kidney exchange literature in market design begins with Roth

et al. (2004), which provides a modification of the top-trading cycles algorithm (TTC) to

allow chains of kidney donation instigated by a deceased donor to be performed. Prac-

tical considerations such as pairwise cycle restrictions with dichotomous preferences were

explored in Roth et al. (2005), where tools from matching theory were leveraged. More

general cycle restrictions we subsequently studied in Roth et al. (2007), where the goal

was to identify transplant maximizing exchanges under different size restrictions. When

there are multiple donors, Roth et al. (2005) also show that it is dominant strategy to

bring all donors when one has dichotomous preferences. On the other hand, when there

are preferences over donors we show the non-existence of desirable pairwise mechanisms.

We study some weaker desiderata and three-cycle mechanisms to provide positive results.
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Other Exchanges. Other types of organ donation and technologies have been studied,

including liver exchanges (Ergin et al., 2020), dual-donor exchanges like lung and kidney-

liver (Ergin et al., 2017), ABO-incompatible kidney donation via sensitization (Andersson

and Kratz, 2020), and multi-donor kidney exchange (Gilon et al., 2019). We generalize

the results of Ergin et al. (2020) to allow for wider application to dual-mode environments

- that is environments with two means of donating or receiving - such as desensitization

and two-donor kidney exchange under risk-preference assumptions. We complement the

latter by studying the more general setting without the preference assumption. Though

our negative results on this echo the impossibility results of Gilon et al. (2019), we use

biological restrictions on the set of feasible matchings to identify such a solution whereas

their work does not account for this and is in fact not possible in the kidney model. We also

study multi-donor liver exchange, using our characterization of dual-mode environments

with desirable mechanisms to show the non-existence of such a mechanism in this setting.

Market Integration. Similar to our work is that of Watanabe (2022), who take an

approach similar to that of Ergin et al. (2020) and apply this to approach to the integration

of kidney and liver exchanges. Our algorithm takes a similar form to theirs in that it

prioritizes less risky donations first, however the algorithm is distinct in the timing of

matches. In particular, we are able to finalize matches as the algorithm proceeds. In their

algorithm however, they construct a reduced compatibility graph that they then compute a

matching over. A benefit of our approach is that we do not need to consistently check that

every agent added is matchable, rather we compute maximum matchings within or between

different partitions of the compatibility graph. As well, the structure of our algorithm

allows it to be clear how to generalize beyond the kidney-liver model, as we explore in

later sections. We also provide a stronger theoretical characterization of our solution by

showing weak-core stability and welfare improvements over the baseline. Dickerson and

Sandholm (2017) also study a similar problem of integrating kidney and liver markets,

but primarily focus on a computational approach to transplant maximization and ignores

incentives.

2 Model

Let I be the set of agents, where N = |I|, and ti ∈ Ti as the type of agent i. Let

M = {m1,m2, ...} denote the set of modalities. Unless said otherwise, we assume agents
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have strict preferences overM∪ ∅ such that mk ≻i mk+1 and m1 ≻i ∅. Let the space of

preference be given by R. For a subset of agents A ⊆ I, m ∈ M and a preference profile

≻∈ RN , we let A∅(m| ≻) be the set of agents that do not find mi individually rational:

A∅(m| ≻) = {i ∈ A|∅ ≻i mi}

Let τm : T × T → {0, 1} be the compatibility function for modality m ∈ M. That

is, an agent i can donate via mode m to agent j if and only if τm(ti, tj) = 1. Otherwise

τm(ti, tj) = 0. We use the notation i→m j to mean that i can donate to j via modality m,

i.e. τm(ti, tj) = 1. Correspondingly, if i cannot donate to j via modality m, then we use

the notation i ̸→m j.

Define an exchange problem to be the tuple E = (I, T ,M, τ,R), and the analogous

family of exchange problems to be given by E = {E = ({1, . . . , n}, T n,M, τ,R)|n ∈ N, τm :

T × T → {0, 1}}.
The compatibility graph with respect to an exchange is an edge-labelled directed graph

GE = (V,E), where V = I is the set of vertices and E ⊆ V × V ×M the set of labelled

edges such that (i, j,m) ∈ E if and only if i →m j. Let Gm
C denote the directed graph

induced by only considering edges corresponding to modality m, and Ḡm
C as the undirected

graph where an edge between (i, j) exists if (i, j,m), (j, i,m) ∈ E. We say a cycle is an

n-cycle if it is of length n. A matching is a set of disjoint 2-cycles in the compatibility

graph. Denote the set of matchings by M, which is implicitly determined by the exchange

problem E being considered. An exchange is a set of disjoint cycles with arbitrary length

in the compatibility graph. Denote the set of exchanges by E. Given an F an exchange or

matching, denote I(F ) as the set of agents involved in a matching or exchange respectively.

Given a graph G = (V,E), the induced subgraph with respect A ⊆ V is G(A) = (A,EA)

where EA = E ∩ (A×A). Operations on this graph, such as graph addition and deletion,

are defined in Ergin et al. (2020).

We let MaxMatch(G|Π) define a maximum cardinality matching of the graph G with

priority determined by Π. For a bipartite graph G with partitions A and B, define sim-

ilarly BipartiteMatch(G|Π, A,B). Though both functions maximize the cardinality of a

matching in G, the computational complexity of the underlying algorithm are different

because BipartiteMatch exploits the structure of a bipartite graph, whereas MaxMatch

applies to general graphs.

For (i,m) ∈ I ×M and A ⊆ I ×M, let Matchable(i|G,A) output True if i ∈ I can

be matched via m in G while ensuring that for all (j,m′) ∈ A, j can be matched via m′.
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Otherwise it will return False.

2.1 Mechanisms

Given a family of exchange problems E, a family of matching mechanisms is ϕ : E×RN →
M and a family of exchange mechanisms is ψ : E×RN → E. A mechanism with respect

to a specific E ∈ E will be denoted ϕE , and if E or E is clear from context, we will simply

use ϕ and refer to it as a mechanism.

2.2 Desiderata

In this section, we describe various desiderata. Fix E ∈ E and ⪰∈ R.

Desiderata 1. A matching M is individually rational if for all i ∈ I, M ⪰i ∅.

Desiderata 2. A matching M is Pareto efficient if there does not exist M ′ ∈ M such

that M ⪰i M ′ for all i ∈ I and there is some j ∈ I such that M ≻j M ′.

Desiderata 3. A matching M is weak-core stable if there does not exist non-empty

C ⊆ I and a matching M ′ ∈M such that for all i ∈ C, M ′ ≻i M , and for all i ∈ C and

j =M ′
I(i), i→M ′

M(i) j.

A generally weaker condition is the following:

Desiderata 4. A matching M is pairwise stable if there does not exist i, j ∈ I and

m,m′ such that i→m j, j →m′ i, m ≻i MM(i), and m′ ≻j MM(j).

A similar definition holds for exchanges, however it is with respect to the full set of

exchanges E. Note that when indifferences exist in a model, only the weak-core and not

the strong-core1 is guaranteed to exist.

Desiderata 5. A mechanism ρ is strategy-proof if for all i ∈ I, ≻∈ RN and ≻′−i∈ R−i,
then ρ(≻) ⪰i ρ(≻i,≻′−i).

That is, it is a weakly dominant strategy for agents to report preferences truthfully.

We say a mechanisms ϕE is satisfactory if for any E ∈ E, ϕE is strategy-proof, and all

elements of its range are Pareto-efficient, individually rational, and weak-core stable. For a

1The strong core requires that in a blocking coalition, all agents weakly improve and at least one agent
strictly improves over their original allocation.
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family of mechanisms ϕ, if for every E ∈ E we have that ϕE is satisfactory, then we say that

ϕ is desirable. The following simple result highlights that, in the setting of matchings,

pairwise stability is sufficient for weak-core stability:

Proposition 1. An individually rational pairwise stable matching is weak-core stable (among

matchings).

2.3 Background

We provide some institutional background that motivate common assumptions, consider-

ations and restrictions in the literature.

Simultaneous Operations. An important point is when an exchange between multiple

pairs is done, it tends to be the case that they are done simultaneously. The reason for

this is that if a the patient of a pair has received an organ from another donor, and their

donor has not yet donated, there cannot be any punishment to the donor or the patient

should the former choose not to donate. That is, we cannot force the donor to donate, nor

take back the organ transplanted to the patient. Thus doing sequential or asynchronous

operations can lead to a holdup problem. This problem is alleviated when considering

chains of donation that are kickstarted by a deceased donation, though in our setting we

only consider paired donation.

Small Exchanges. The literature often considers pairwise exchanges, that is the restric-

tion that any pair i whose donor donates to the patient of pair j also has the donor of pair j

donating to the patient of pair i. Though it is possible to do larger size exchanges, and this

has been done in reality, there are a number of considerations that make pairwise exchange

a good starting point in theory and practice. Due to the requirement of having simulta-

neous operations, smaller size exchanges are preferred as they can impose a prohibitively

large logistical and medical burden on the hospital performing the multiple operations.

Though it is also common to have three-way exchanges, since we are introducing different

methods of donation in a single model that may require different expertise and thus com-

plications running simultaneous operations, we consider pairwise exchanges primarily and

larger exchanges when desirable pairwise exchanges are impossible. Beginning with such an

approach in novel environments is common in the literature. Furthermore, from a theoret-

ical and algorithmic standpoint, attempting to maximize the size of a pairwise exchange -

which corresponds to having as many transplants via pairwise exchange as possible - is very
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computationally tractable as it corresponds to finding a maximum matching in a graph.

However hardness results are abound as we go beyond pairwise exchanges. Though under

very specific assumptions we can make tractable progress towards identifying maximum

larger-cycle exchanges, we consider this scope for future work.

Tissue-Type Compatibility. From a medical point of view, an important factor in the

ability of a donor to be able to donate to a patient is their mutual biological compatibility.

This is a product of different types of compatibility, such as blood-type, size and tissue-type

compatibility. For all donors and patients, their individual blood-type and size are known,

and their mutual compatibility can be inferred from this. As such, we can incorporate

this information into a mechanism by treating this as a restriction on the set of feasible

exchanges. However, tissue-type compatibility is more difficult to ascertain. In general,

the blood of a patient and their prospective donor must be mixed together and tested

to determine this. Thus to incorporate this as a restriction on the feasible set requires

that every pair of patient and their potential donors be tested in this fashion. This is

impractical in reality, and instead we tend to assume that all patients and donors from

different pairs are incompatible. That being said, patients and donors from the same pair

are often already tested for tissue-type compatibility in the first place, hence we allow

pairs in the market to be tissue-type compatible or incompatible. The reason we usually

have this information is that donors brought by a patient in a pair are usually those who

want to donate specifically to that patient. As such, they must have already checked

compatibility prior to entering the paired exchange mechanism. If they are compatible

by all requirements but enter the exchange nevertheless, we assume they are transplant

maximizers : there are willing to engage in an exchange in order to allow other pairs that

are incompatible to benefit from a donor swap.

Algorithmic Implementation. To find an ideal pair exchange, designers of paired

exchange mechanism construct a compatibility graph with nodes as pairs and directed

edges representing the ability of a donor in one pair to donate to the patient of another.

Furthermore, weights are added to edges in the graph that corresponds to factors like

likelihood of transplantation success and priority. Once this has been done, we maximum

weighted exchange is computed, with relevant cycle length restrictions placed on the set

of feasible exchanges.
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2.3.1 Kidney Exchange

The standard models of kidney exchange primarily consider blood-type compatibility as

the main determinant of biological compatibility. A patient’s blood type is given by the

presence of two antigens, either A or B. If there are missing both antigens, we say they

have blood type O. Hence the set of possible blood types considered are A, B, AB, or O. A

person i can donate to another person j if whenever j is missing some antigen k ∈ {A,B},
then so is i. For example, O donors are compatible with all patients as they are missing

every antigen, however O patients are only compatible with O donors. On the other hand,

AB donors can only donate to AB patients as they are missing no antigen, but as patients

they can receive from any donor.

Desensitization. Though an ideal kidney exchange is one where the patients and donors

are blood-type compatible with one another, there exists technology by which blood-type

incompatible donations can be performed. As Andersson and Kratz (2020) note, though

the graft survival rates for such a transplant are identical to compatible donations, the

main issues with such an approach related to monetary costs of the immunosuppressant,

longer waiting time prior to transplantation, and the need for additional medical treatment.

As such, it is reasonable to assume that this is a less preferred mode of receiving a kidney

than a compatible donation.

Multiple Donors. Some patients may have multiple willing but (potentially) incom-

patible donors that they want to be considered for a paired exchange. In practice, this

information is incorporated by adding additional edges in the compatibility graph for ev-

ery donor brought to the exchange. However, it is not possible to express preferences over

these donors, and by computing a maximum weight matching it is not clear which donor

may be picked. As a result, patients may strategize about which donor they may choose to

bring to the market. Furthermore, given that the exchange mechanism is run repeatedly,

they might choose to only bring additional less preferred donors after failing to match with

their most preferred donor. Ultimately, this results in an induced game where patients

strategize on which set of donors to bring. In general we want patients to bring all their

feasible donors rather than stagger their entry throughout time, so as to find maximum

exchanges and improve overall welfare.
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2.3.2 Liver Exchange

In liver exchange, a donor donates a portion of their liver, referred to as a lobe, rather than

their whole organ as in kidney exchange. Further more, liver exchange differs from kidney

exchange in two key ways: biological compatibility and modes of donation. The main

features of compatibility with liver donation is blood type as well as size compatibility. By

the latter we mean that a potential donor is compatible with a patient if the lobe they

donate is large than what the patient requires. This is important as donors are also able to

choose which lobe - the left or right - they donate, given that they differ in size. However,

it is known that the right lobe is more dangerous in terms of mortality and morbidity to

donate than the left lobe. Given this, we assume that agents will prefer donating their

left lobe over their right lobe, as in Ergin et al. (2020). Similarly, kidney donation is also

known to be safer on both metrics than liver donation, whether left or right lobe. Thus we

maintain the same assumption on preferences when comparing kidney to liver donation2.

Desensitization. Though desensitization is possible, it is mainly done with donations

from brain dead patients (Egawa et al., 2023). We discount this as a possibility due to its

limited current implementation for living donation, but note that it might have scope for

exploration in future work.

3 Dual-Mode Exchanges

In this section, we study the setting where our exchange only has two modes, i.e. M =

{m1,m2}. This section provides a generalization of Ergin et al. (2020), which studies a

model that characterizes the existence of desirable mechanisms for liver exchange. In their

work, the two modes of interest corresponded to donating a left lobe as opposed to a right

lobe. It is assumed that objective medical risks associated with donation determines an

individuals preference ordering between the two modes. We consider a similar assumption

as their environment, and find weaker conditions under which their results hold in a new

novel environments such as kidney exchanged with risk-ordered donors and kidney exchange

with desensitization. We further find a partial converse result that shows our condition

nearly guarantees the non-existence of a desirable mechanism, which is applied to liver

2Note this is it not necessarily obviously true. Since the liver regrows whereas the kidney does not, it
is plausible to imagine that some agents might have the opposite preference based on the need to “feel
whole”.
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exchange with multiple donors.

In characterizing the existence of desirable mechanisms, we begin with the same graph

construction as Ergin et al. (2020). Given GC and a set of agents A ⊆ I, construct the

following digraph G(A) = (A,E ′): let (i, j) ∈ E ′ if and only if

1. i can donate to j via m1, i.e. i→m1 j, and

2. j can donate to i only via m2, i.e. j ̸→m1 i and j →m2 i.

We refer to G(A) as the precedence digraph, as in Ergin et al. (2020). We say a pair

of agents i, j ∈ I is mutually compatible via m ∈ M if i ↔m j. We say that G(A)

is weakly acyclic if every cycle contains a pair of agents mutually compatible via m1.

Furthermore, it is acyclic if there are no cycles. This definition of acyclicity follows from

Ergin et al. (2020). Let TopOrder(G) return a topological order on G if it exists.

Observation 1. G(I) is weakly acyclic if it is acyclic.

This follows from the fact that if there are no cycles, then it is vacuously true that all

cycles contain a pair mutually compatible via m1 donation. We now informally describe

the algorithm of Ergin et al. (2020), whose properties we aim to generalize:

1. Compute a maximum match using some priority order via m1 and promise matched

agents a match via m1

2. For k ∈ TopOrder: (reverse topological order)

(a) If k is Matchable (while preserving promises), then promise a match via m1

(b) Transform to m2 otherwise (if m2 is feasible)

3. Compute a maximum match via m2 while maintaining promises.

Proposition 2. If G(I) is weakly acyclic, then the Preference Adaptive algorithm of Ergin

et al. (2020) is well-defined.

Proof. Assume G(I) is weakly acyclic. For contradiction, assume there is a cycle C in

J̃K (using the notation of Ergin et al. (2020)), and thus there does not exist a topological

order. Otherwise the operation TopOrder is well-defined and the algorithm of Ergin et al.

(2020) applies. Denote G′ as the graph. Since G′ is a subgraph of G(I), then all cycles in

the former are also cycles in the latter. Given that G(I) is weakly acyclic, then any cycle
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contains an m1 mutually compatible pair. Hence there exists i, j ∈ C ∩ (J̃K), and thus

i, j ̸∈ JK . This is a contradiction as, assuming i < j in the ΠL order, then i would not be

transformed to m2 since it would be matchable with j. Thus G′ is acyclic, and there exists

a topological order.

This result considers the potential claim that, without acyclicity, the application of

Ergin et al. (2020) to our setting is not valid as a topological order would not exist. The

key insight here is that the construction of the order is only necessary after agents matched

mutually via m1 have been made. Thus a weakly acyclic graph admits a topological order

once these initial agents have been matched. Given this, we find weak acyclicity is sufficient

for this mechanism to be desirable:

Theorem 1. If G(I) is weakly acyclic then the Preference Adaptive algorithm of Ergin

et al. (2020) is a desirable mechanism.

Since the mechanism is the same as that of Ergin et al. (2020), our proof primarily

builds on their analysis by extending their results to weak-core stability, and showing the

other properties hold under weaker conditions. We have shown that the condition of weak

acyclicity is sufficient, but how about necessity? The following results shows a partial

converse to this end.

Proposition 3. Consider a E ∈ E that induces a preference digraph that contains a

simple cycle with no mutually compatible m1 pairs, and any mutually compatible m2 pairs

are adjacent3. Then there is no satisfactory mechanism.

This result finds that under some additional constraints on the position of mutually

compatible m2 pairs, if there does exist a cycle after removing all mutually compatbile

m1 pairs then there is no satisfactory mechanism, much less a desirable mechanisms. The

proof follows by contradiciton, where we consider the environment that induces this cycle

and assume that there does exists an efficient matching from a strategyproof mechanism.

Due to the ability of pairs to only match with agents before or ahead of them in the cycle,

we can use the constraints of efficiency and strategyproofness to identify a contradiction.

The following illustrates the impossibility result through an example with three agents.

Example 1 (An environment without a desirable mechanism). Consider the precedence

digraph in Figure 2 with the cycle L1 → L2 → L3 → L1, and assume there is a desirable

3That is, they have a (possibly directed) edge between them.
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L1

L2 L3

Figure 2: Precedence digraph with the matching for the preference profile WWW in
Example 1 highlighted.

mechanism. Since this is a cycle of length 3, and no two agents that are adjacent can bem1-

mutually compatible, there are no m1-mutually compatible pairs in this cycle. Let XY Z

for X, Y,X ∈ {U,W} be a preference profile, where W means that m2 is IR (i.e. willing)

and U when it is not (i.e. unwilling). Note that even if there were mutually compatible

m2 pairs, such a matching would never be efficient. Given this and the fact that at most

two agents can be matched in a matching, we can denote a matching by (Li, Lj), where Li

donates via m1 and Lj donates via m1.

First consider the case the profile WWW . Without loss of generality, assume that

(L1, L2) is the matching given by the mechanism, where L1 donates by m1 and L2 donates

by m2. Now consider UUW , and observe that (L2, L3) is the only individually rational

and efficient match. For UWW , the possible individually rational, efficient matches are

(L2, L3) and (L1, L2). The former would contradict strategyproof-ness of the mechanism,

as L1 can misreport from U to W and be strictly better off. However the latter would

also contradict strategyproof-ness, as a misreport by L2 from W to U would give them a

strictly better outcome. As no match is feasible, this mechanism cannot be desirable. △

3.1 Applications

We provide a general characterization of settings that are sufficient, and nearly necessary, to

admit desirable mechanisms. This approach builds of previous work, and an open question

is how practically necessary was our generalization. For example, is it the case that other

applications of interest already induce an acylic preference digraph? We motivate the

strength of our results through the following applications, two of which provide applications

that admit non-acyclic but weakly acyclic environments, and one of which leverages our

converse result to show general non-existence of a desirable mechanism for the given setting.
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O

A B

AB

(a) Compatibility Graph

X ≤B Y O A B AB
O ✓ ✓ ✓ ✓
A ✓ ✓
B ✓ ✓
AB ✓

(b) Table description

Figure 3: Blood type compatibility.

3.1.1 Incompatible Donation via Desensitization

The prototypical model of kidney donation considers agents that consist of patient-donor

pairs who are incompatible either due to tissue-type incompatibility or blood-type incom-

patibility. With the assumption that all patients are tissue-type compatible with all other

donors, the problem of maximizing the number of pairwise exchanges is the same as iden-

tifying the maximum match in a compatibility graph. Because certain blood types are

more rare than others and thus have heterogeneous demand in the exchange market, cer-

tain agents fare better than others due to their blood type. To overcome this barrier,

the development of novel desensitization has allowed patients to receive transplants from

ABO-incompatible donors. In the context of efficient matching, this problem has been

studied by Andersson and Kratz (2020). We extend this line of work by showing how this

model satisfies weak-acyclicity strictly, and thus there exists a desirable mechanism.

The model is formally described as follows. Consider agents i ∈ I with type Xi − Yi ∈
B × B, where Xi is the blood type of the patient and Yi is the blood type of the donor.

Their ability to participate in an exchange with j ∈ I is by one of two modes. The first

mode, m1 is the standard exchange mode, where i →m1 j if j’s donor is able to donate

to i’s patient. That is Xi ≤B Yj, where the blood type order ≤B is shown in Figure 3.

The second mode is m2, which allows i’s patient to undergo desensitization in order to

become compatible with j’s donor. Note that by doing so, a patient is compatible with all

donors. However, this is less desirable than compatiblity via the non-desensitization mode,

as noted in Andersson and Kratz (2020).

Andersson and Kratz (2020) note the connection between the strategic incentives in

kidney donation with desensitization and those in liver exchange as studied in Ergin et al.

(2020). However the following example highlights how the application of the same mecha-

nism will not obviously preserve the same properties. The approach of Ergin et al. (2020)
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K1 K2

K3K4

(a)

I Patient Donor 1
K1 A A
K2 B A
K3 B B
K4 A B

(b) Example observable characteristics

Figure 4: Isolated component, and example observable characteristics. Assume all agents
in the component have preferences K ≻ L ≻ ∅, that is they find all donations acceptable.

utilizes the existence of a specific acyclic directed graph, which is to draw an edge from i

to j if i can interact via m1 but not m2
4. Again we can consider the induced graph as in

Ergin et al. (2020), where a directed edge from i to j means that j’s donor is compatible

with i, but j can only receive a donation from i if they undergo desensitization. Alterna-

tively, we can frame this as j is compatible with i but i is not compatible with j, since by

being desensitized they are able to receive a donation from any blood type. The following

example shows that the graph is not always acyclic.

Example 2. Consider the graph in Figure 4. There is clearly a cycle given by the following

patient-donor pairs:

{(A,A), (A,B), (B,B), (B,A)}

△

However, we can observe that once all donation possibilities via regular, that is without

desensitization, pairwise exchanges have been exhausted and we’ve removed those agents,

we would have removed K2 and K4. Thus the remaining graph is acyclic. In the following

result, we show that in general the preference digraph is weakly acyclic but not acyclic by

showing that only cycles similar to that in Example 2 can exist.

Proposition 4. The digraph is always weakly acyclic, but not always acyclic.

As a result, we are able to apply the mechanism of Ergin et al. (2020) to this setting,

and thus achieve desirable outcomes.

4Note that since it is the patient that undergoes desensitization, we frame the modality as an interaction
rather than what they donate.
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K1 K2

K3K4

(a)

I Patient Donor 1 Donor 2
K1 A A B
K2 A B A
K3 B B O
K4 B A B

(b) Example observable characteristics

Figure 5: Isolated component, and example observable characteristics. Assume all agents
in the component have preferences K ≻ L ≻ ∅, that is they find all donations acceptable.

3.1.2 Two-Donor Exchange

In this section, we interpret the modes of interaction with another agent as having multiple

donors by which one can donate the corresponding organ. We consider the case where

different donors face different, objective medical risks. Hence they can be ranked in order

of the risk imposed on them by undergoing the surgery. We assume the agents preference

over which donor donates is reflected in this risk, and without loss we assume that the

first (listed) donor is preferred over the second donor in terms of who should donate. This

model is studied with respect to kidney and liver exchange and we show a possibility result

with the former and am impossibility result for the latter as an application of our more

general results.

Kidney Exchange. We now consider the standard kidney exchange model, but allow

for an agent to list two donors rather than one. This occurs in practice. An agent is a triple

composed of a patient and two donors. We let an agent i’s type be given by Xi − Yi − Zi,
where Xi is the patient’s blood type, and Yi and Zi are the blood types of the first and

second donor respectively.

Our modes of donation are m1 and m2, where donation via ml from agent i to j means

that i’s l-th donor can donate to j. Hence a directed edge in our digraph i → j can be

interpreted as i’s first donor being compatible with j’s patient, but only j’s second donor

is compatible with i.

The following example takes the same structure as the previous example:

Example 3. Consider the graph. There is clearly a cycle given by the following patient-

donor pairs:

{(A,A,B), (A,B,A), (B,B,O), (B,A,B)}

△
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L1 L2

L3L4

(a)

I Patient Donor 1 Donor 2
L1 A, 1 AB, 2 B, 1
L2 AB, 2 A, 2 A, 1
L3 A, 2 O, 1 O, 2
L4 B, 1 O, 1 O, 2

(b) Example observable characteristics

Figure 6: Counterexample for liver exchange with multiple donors.

Proposition 5. The digraph is weakly acyclic but not acyclic.

The setting of objective preferences over donors is not without contention. In particular,

there may be other considerations beyond medical risk, such as different donors having

different abilities to take time off work due to familial obligations. In such a case, this is

not reflected in observable medical risks. We provide some insight into the problem when

preferences orderings are not observable, providing a negative result for pairwise cycles and

a positive result for three cycles.

Liver Exchange. Could we extend this to other organ exchanges, such as liver exchange?

The model is as follows. Let S = {1, ..., S} ⊆ R+. An agent i’s type is Xi − Yi − Zi where
Xi, Yi, Zi ∈ B × S refer to the blood-size type of the patient, the first donor, and the

second donor respectively. As before, we assume the donors are ordered by risk. Let XB

and XS refer to the blood type and size of X. Y can donate to X if they are blood and

size compatible:

1. XB ≤B Y B, and

2. XS ≤ Y S

Proposition 6. The setting of multiple donors cannot be implemented in liver exchange.

Proof. Use previous theorem on partial converse in conjunction with the example in Figure

6b.

Since this is a negative result in a restricted setting, that is of a known common pref-

erence ordering, we then have an impossibility result in the general environment with

potentially differing preference orderings as well.
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4 Multi-Modal Exchanges

In this section, we study how to go beyond dual-mode exchanges. We specify a general

property call partition separability, which applies to a range of environments, as well as

study the specific application of multi-donor kidney exchange with more than two donors

and heterogeneous preferences.

4.1 Risk-Ordered Integration of Multiple Exchanges

We first consider what we call risk-ordered exchanges, where there is an ordered set of

different organ exchanges, each potentially with multiple modes. We further assume that

agents share a common preference ordering consistent with the exchange ordering over these

modes, which is motivated by objective medical risks being ordinally identical across agents

and the determinant of their preferences. By placing restrictions on the compatibility

structure through properties we call separability and partition separability, we are able to

model risk-ordered exchanges where, respectively,

1. each exchange has only one donation mode

2. if a mode in one exchange is preferred to another mode in a different exchange, then

this is the case for every mode in both exchanges.

Though the latter case subsumes the former, we provide a detailed description of the former

for intuition. In either case, we identify desirable mechanisms. We conclude this subsection

by formally describing the application of integrating multiple organ exchanges.

4.1.1 Warm-Up: Separable Exchanges

To provide intuition for the main results of this section, we begin by studying what we

call separable exchanges. Consider a setting with N modes (i.e. |M| = N). We say GC

is separable if there exists {An}Nn=1 such that I = ⊕Nn=1An and for all n ∈ {1, . . . , N},
i →mn j only if j ∈ An. We can observe a connection between seperability and acyclicity

as follows:

Proposition 7. If GC is separable, then G is acyclic with respect to any distinct mi and

mj.

Proof. Fix distinct mi,mj ∈M. Consider the graph Gmi,mj
(I). Assume for contradiction

that there is a cycle such that C = (i0, . . . , iK−1). For any k ∈ N, ik mod K → i(k+1) mod K
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implies, by separability, that ik mod K →mi
i(k+1) mod K and i(k+1) mod K →mj

ik mod K . By

separability, i(k+1) mod K ∈ Ai and ik mod K ∈ Aj. Since this is true for arbitrary k, then

we have that for any k ∈ {0, ..., K − 1}, ik ∈ Ai ∩ Aj. This is a contradiction since {An}
is a partition of I, and thus Ai ∩ Aj = ∅. Thus there cannot exist a cycle.

In effect, separability requires that acyclicity holds for any pair of modes, regardless of

the order of the mode.

Note that if GC is separable, when designing a mechanism we can simply use the disjoint

sets given by Ai = {j ∈ I|∃i ∈ I, i →mi
j} and not consider agents outside of these sets

as they would not be compatible via any modality.

Consider the following mechanism, which leverages the separability of GC . Assume GC

is separable, and consider {Ai} described above as the partition. Fix a preference profile

≻∈ RN , and let ϕ be a mechanism such that ϕ(≻) is the output of the following algorithm.

Let M = ∅.

1. Process through n ∈ {1, . . . , N}:

(a) Remove unwilling mn agents: for each agent i ∈ I

∅ ≻i mn =⇒ I ← I − {i}

(b) Consider Ḡn = Gmn
C (An ∩ I). Find a maximum match via mn within Ḡn:

M ←M ∪ MaxMatch(Ḡn|Π)

(c) Remove matched agents: I ← I − I(M).

(d) Process through o ∈ {n+ 1, . . . , N}

i. Remove unwilling mo agents from An ∩ I: for each agent i ∈ An ∩ I

∅ ≻i mo =⇒ I ← I − {i}

ii. Consider Ḡn,o = GC((An ∪ Ao) ∩ I). Find a maximum bipartite match

between An and A0 within Ḡn:

M ←M ∪ BipartiteMatch(Ḡn,o|Π, An, Ao)

iii. Remove matched agents: I ← I − I(M).
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Intuitively, the mechanism operates as follows. We order agents by risk, treating those

that require lower risk donations to have higher priority. In the first stage, we compute

a maximum match between all agents in the highest priority class. In doing so, these

agents get their best option, as not only receive the organ required but also donate via

the least risky mode. We proceed to prioritize these agents by considering an individually

rational bipartite match between agents in the highest priority class with those in the

second highest priority class. From the perspective of agents in the highest priority class,

as all opportunities to match with another top priority class agent have been exhausted

(since the match in the first stage was maximum), then this is their second best option.

On the other hand, agents in the second highest priority class that are matched get their

best choice. As we repeat this procedure of bipartite matching until we reach the lowest

priority class, though we have prioritized the highest class, each class on the other side of

the bipartite matching get their best option. Thus they cannot be improved upon. At this

point, we have exhausted all feasible matching opportunities for the highest class, and we

can repeat this procedure by replacing the highest with the second highest class in order

to exhaust their opportunities. It is this ordering of matching that is associated with the

common preference structure that allows us to find a mechanism with ideal properties:

Theorem 2. If GC is separable, then ϕ is a desirable mechanism.

We are able to decompose our mechanism into a combinations of general and bipartite

matching due to the separable structure of GC . Can we generalize this process beyond

separability? The following section provides such a generalization.

4.1.2 Partition Separability

We say GC is partition separable if there exists a partition {Mk}Kk=1 ofM such that

1. Mk is contiguous, that is if ma,mb ∈ Mk then for all c such that a ≤ c ≤ b,

mc ∈Mk, and

2. there exists {Ak}Kk=1 such that I = ⊕Kk=1Ak and for all k ∈ {1, . . . , K} and m ∈MK ,

i→m j only if j ∈ Ak.

Contiguity allows us to say that, under a common preference assumption, that the

partition is contiguous with respect to this preference. The second condition is analogous

to that in separability, whereby to donate via mode in some partition element k, the agent

receiving via that mode must belong to the associate partition of agents. We provide some
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insight into weakening contiguity by considering other restrictions in Section ?? of the

Appendix. Again, we have a connection between acyclicity and partition separability:

Corollary 1. If GC is partition separable, then for k ̸= k′, G is acyclic with respect to any

mk ∈Mk and mk′ ∈Mk′.

Proof. This follows from the same argument as in the previous proposition.

Consider the following mechanism, which leverages the weak separability of GC . As-

sume GC is separable, and let {(Mk, Ak)}Kk=1 be described as above. Fix a preference

profile ≻∈ RN , and let ψ be a mechanism such that ϕ(≻) is the output of the following

algorithm. Let M = ∅.

1. Process through k ∈ {1, . . . , K}:

(a) Remove unwillingM1
k agents: for each agent i ∈ I

∅ ≻iM1
k =⇒ I ← I − {i}

(b) Consider Ḡk = GMk
C (I ∩ ∪l∈Ml

Al). Find a matching via ϕk:

M ←M ∪ ϕk(≻, Ḡk)

(c) Remove matched agents: I ← I − I(M).

(d) Process through l ∈ {1 +
∑k−1

p=1 |Mp|, . . . ,
∑k

p=1 |Mp|}:

i. Process through o ∈ {1 +
∑k

p=1 |Mp|, . . . , N}

A. Remove unwilling ml agents from Ao ∩ I: for each agent i ∈ Ao ∩ I

∅ ≻i ml =⇒ I ← I − {i}

B. Consider Ḡl,o = GC((Al ∪ Ao) ∩ I). Find a maximum bipartite match

between Al and Ao within Ḡl,o:

M ←M ∪ BipartiteMatch(Ḡl,o|Π, Al, Ao)

C. Remove matched agents: I ← I − I(M).
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Theorem 3. If GC is partition separable and for each k ∈ {1, . . . , K} there exists ϕk

desirable with respect to GC(Ak), then ψ is a desirable mechanism.

The intuition behind this mechanism follows that of the separable setting. The main dif-

ference in this setting is the modular structure that takes advantage of desirable exchange-

specific mechanisms instead of computing a maximum match.

The utility of this formulation is in its robustness to future medical developments.

Given that new technologies in medicine are continuously being developed, allowing for

novel donation modalities and thus more ways by which individuals can receive or donate

an organ, this poses an issue in paired exchange when risks differ across modes. We

have already identified how this occurs between exchanges, for example kidney and liver,

and within exchanges, such was with left and right lobe liver donation. Market designers

working in this domain must often attend to the specific structure of the problem, such

as biological compatibility, to create desirable matching mechanisms. By allowing said

designers to focus on individual organ exchanges and, under the assumption of a common

risk-order, not on the integration of multiple organ exchanges, our mechanism can easily

develop alongisde new technologies. An example of early stage research on new donation

modes includes intestinal transplant. Though currently not commonly done due to the

increased donor risks and lower quality of the transplanted organ, should the technology

become sufficiently safe for donors and effective for patients, it is likely to be objectively

riskier for donors than donating a kidney or liver. As such, this would satisfy assumptions

within our model. Future work should study how to relax our risk-ordering assumption,

which is less likely to hold as more modes are introduced. The following section describes

major applications where our separability and partition separability structures are satisfied.

4.1.3 Application: Multiple Organ Exchanges

Where does this structure appear? Between organ exchanges! Let a family of organ

exchanges {Eα}α∈A induce an exchange EA as follows:

1. An agent i belonging to Eα with type Ti has new type Ti − α in EA

2. The set of modes in EA isMA = ∪α∈AMα

3. An agent i can donate to an agent j in Eα only by some mode m ∈Mα
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Corollary 2. Consider this family of organ exchange problems {Eα}α∈A, where A is a

finite ordered set. Let G be the compatibility graph induced by EA. If each exchange Eα
has a

1. single mode, then G is separable.

2. (potentially) multiple modes, then G is partition separable.

Proof. This proof follows from acyclicity between exchanges, which is a result of the fact

that donating via a mode belong to a certain exchange can only be donated to an agent

in that exchange.

This observation allows us to see that when families of organ exchange problems have

a common ordering, then our previous results highlight the existence of a desirable mech-

anism. An example of this would be in integrating kidney and liver exchanges:

Example 4 (Kidney-Liver Exchange). An agent i’s type is given by Xi − Yi − Oi where

Xi, Yi ∈ B×S is the patient and donors blood-size type (as in the liver exchange model), and

Oi ∈ {K,L} refers to the organ required by the patient. There are two modes of donation,

m1 = K and m2 = L. Hence i→m1 j if Xi ≤B Xj and Oi = K, and i→m2 j if Xi ≤B Xj,

Yi ≤ Yj and Oi = L. △

We provide a more in depth analysis of kidney-liver exchange without right lobe dona-

tions in a subsequent section. We remove the possibility of right lobe donation primarily

for analytic simplicity. Our mechanism, though more general, presents a similar structure

as that of Watanabe (2022) in terms of the resulting matching. We detail a comparison in

later sections.

4.2 Kidney Exchange with Multiple Donors

We give some insight into the multi-donor kidney exchange problem. Unlike before, we

do not assume that the donors are ordered by risk. Instead we consider the more general

setting of any preference over donors, and show some tractability in finding a desirable

mechanism. Though weak acyclicity proved a key role in the dual-mode applications, it is

not clear how to leverage a similar structure for this multi-donor application since this goes

beyond multiple modes. Furthermore, we no longer have a common preference assumption.

As such we take an alternate approach based on the structure of the underlying compatibil-

ity relation. We describe the some necessary assumptions as well as the algorithm below,

and later sections provide some further intuition and discussion.
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Comment on strategyproofness. It might be plausible to reason that our definition

of desirable can be weakened. In particular, we could consider a constrained notion of

strategyproofness where agents cannot say that a mode is feasible if it is their true pref-

erences state that it is not feasible. One could motivate this as follows: blood type is

verifiable, hence when a donor is proposed as a feasible option, their blood type can be

readily checked. Note however that an infeasible mode is said to be feasible, but it is never

used, then there may be no means of ensuring that this mode was actually feasible. This

can be problematic if our mechanism relies on modes that are not used and strictly worse

for the agent than the mode they are implemented with in the matching. In such a case,

an agent can affect the outcome by changing the order among their comparatively worse

modes. Thus, such an assumption of verifiability warrants caution, though it may be a

practical consideration nevertheless.

4.2.1 Impossibility of Pairwise Mechanisms

Past work on the same problem of kidney exchange with multiple donors. By example, they

aim to show the impossibility of a desirable mechanism under a pairwise cycle constraint.

However, as we show below, their example is not possible under the standard blood type

compatibility model. In particular, this compatiblity structure restricts the set of feasible

trades. We say a set of pairwise matches are rationalizable if there exists a choice of

blood types for patients and donors that make these matches as exactly the feasible set of

matches.

Proposition 8. The set of feasible pairwise matches given in Figure 1 of Gilon et al.

(2019) is not rationalizable.5

This result is illustrative about the importance of accounting for the blood-type com-

patibility structure. Though we nevertheless find an impossibility result for (pairwise)

matching mechanisms in the subsequent proposition, we will later leverage some proper-

ties this compatibility structure for three-cycle mechanisms.

Proposition 9. There does not exist a desirable matching mechanism for kidney exchange

with multiple donors.

5Figure 1 of Gilon et al. (2019) was used to prove the analogous negative result in their Theorem 3.
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4.2.2 A Two-and-Three Cycle Mechanism

We now explore the existence of desirable mechanisms when cycles of size at most three

can be used. We consider various assumptions either for simplicity in the design of the

mechanism, or based in realistic assumptions on the distribution of agents.

Our first assumption simplifies the design of our mechanism by removing from consid-

eration an uncommon blood type6.

Assumption 1. There are no patients with an AB blood type.

This next assumption is common in the literature, as stated in Roth et al. (2007), which

is motivated by the intuition that there are many O−A and O−B pairs due to blood-type

incompatibility between patient and donor7 and the high proportion of O blood types8

Assumption 2 (Long-side of the Market). At least one of each type in O−b for b ∈ {A,B}
is unmatched in any feasible matching.

This final assumption is for simplicity of the mechanism, similar to that in Roth et al.

(2007) except we preclude the possibility of no b− b∗ agents:

Assumption 3. There are at least two O −O∗, B −B∗, and A− A∗.

Let Max-3-Match compute a maximum exchange with cycles of size at most 3, analogous

to MaxMatch. Without loss of generality, we assume nA−B∗ ≥ nB−A∗, and our algorithm

is analogous in the case where nA−B∗ < nB−A∗
9. When we say that an agent i of type

X−Y Z∗ drop their preferred donor, we transform their type to be X−Z∗ and eliminate

their donor Y from being considered. We use the following notation to represent this:

i← X − Z∗.
Consider the following mechanism:

1. Maximum 3-match IB−B∗

2. Maximum 2-match IA−B∗ and IB−A∗

3. Maximum O − A∗ → A−B∗ → B −O∗
6Approximately 4% in the US.
7This leverages the idea that patients tend to enter the exchange after trying to use their donors but

failing due to compaitiblity.
8Approximately 48% in the US.
9We detail this case in the Appendix, though it is not needed in the proof of strategyproofness of our

algorithm in the edge-case where nA−B∗ = nB−A∗ and a A−B,A agent deviates to A−A for example.
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4. If no A−B∗

(a) continue

5. If no B −O∗

(a) A−B∗ drop their preferred donor

6. Apply serial dictator where agents are O − A∗ and O − B∗ and objects are A− O∗
and B −O∗. Afterward, remaining O − b∗ drops their A or B donors.

7. Maximum 3-match IA−A∗

8. Maximum 3-match IO−O∗

We now state the main properties of this mechanism:

Theorem 4. This mechanism is PE, IR, and SP.

When there are no cycle constraints, variants of TTC that account for indifferences can

easily be applied to our problem by the following. Let preferences over donation modes

induce preferences over agents where agent i is strictly preferred to agent j by agent k if k

can donate to i using a donation mode that is strictly better than any donation mode that

k can use to donate to j. Thus approaches that leverage top trading cycles can be used.

However, in our environment we require exchanges to be composed of two or three

way cycles, that is cycles in an exchange are of length at most three. It is well known

in the literature that imposing cycle constraints makes it such that there is generally no

mechanism that is efficient, strategyproof, and individually rational for house exchange.

So why is it possible in this environment to find such a mechanism when there is a cycle

constraint? The following result gives some intuition by showing that if there is a top

trading cycle, then there is one that has length two:

Proposition 10. Consider a graph where all agents point to their favourite feasible agent.

If there is a cycle, then there must be a two cycle.

This result, and its proof, show that the structure of compatibility relation and donor

preferences induces a certain structure on preferences over agents that is somewhat com-

patible with the concept of a top trading cycle. Though this provides some intuition for

why it is possible, note however that we cannot use the TTC algorithm itself due to in-

differences, and some approaches that adapt TTC to allow for indifferences cannot clearly
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be adapted to leverage this 2-cycle existence property. Further work should explore how

to exploit such structure to show existence of satisfactory mechanisms in general.

We conclude by identifying some useful properties that our mechanism satisfies.

Limited Donor Lists. We say that a mechanism is k-donor equivalent for A ⊆ I if

for any pair i ∈ A, their outcome in the mechanism is the same than if they truncated

their preference to their top k alternatives.10

Outcome Maximum. We say that a mechanism is outcome maximum if given only

the donors used in the outcome of the exchange, it is a maximum exchange.

Proposition 11. The mechanism is

1. outcome maximum,

2. 1-donor equivalent for IB−∗, and

3. 2-donor equivalent for IA−∗.

Proof. The first claim can be seen by observing the worst case outcomes throughout the

algorithm, noting that we proceed down an agent’s donor list. For the second claim, we

refer to Roth et al. (2007) where our outcome is consistent with their findings for maximum

two- and three-way cycles.

5 Analysis of Kidney-Liver Exchanges

We provide a simple illustration of the approach, challenges and benefits by looking solely

at integrating kidney and liver exchanges. We will focus on liver exchanges with only

left-lobe transplantation allowed, for simplicity. Before studying these properties, we will

compare our approach to previous work. We will denote our proposed mechanism by f .

Combining organ exchanges have been studied academically in previous work byWatan-

abe (2022) and Dickerson and Sandholm (2017). In comparison to the former, our mecha-

nism is distinct in its structure, generalizable to new settings, modular in that it can utilize

10Formally, for a given preference ≻i overM∪{∅}, denote the k-truncated preference ≻k
i such that

there exists ml ∈ M distinct where m1 ≻i · · · ≻i m
|M| and m1 ≻k

i · · · ≻k
i mk ≻k

i ∅ ≻k
i mk+1. Then a

mechanism ϕ is k-donor equivalent for A if for all preference profiles ≻ and for all agents i ∈ A, then
ϕ(≻) = ϕ(≻k

i ,≻−i).
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I Patient Donor
K1 AB, 1 A, 6
K2 A, 1 B, 1
K3 AB, 1 A, 1
K4 A, 1 O, 1
K5 B, 1 O, 1
K6 AB, 1 B, 1
K7 B, 1 AB, 1
K8 AB, 1 B, 1
K9 O, 1 A, 1
K10 O, 1 B, 1
L1 AB, 5 A, 3

(d) Example types

Figure 7: Isolated component, and example types. Assume all agents in the component
have preferences K ≻ L ≻ ∅, that is they find all donations acceptable. − indicates
biological feasibility, and ↔ indicates edges in a matching.

other organ-specific mechanisms, and leverages properties of the compatibility graph in or-

der to efficiently match individuals throughout the algorithm, rather than at the end.

In Dickerson and Sandholm (2017), they consider a setting without preferences or

strategic behaviour, and allow for chains, cycles of length greater than 2, and altruistic

donors. Whereas the goals of their analysis lie in the potential transplantation gains

from trade in a general context, ours has a similar goal with added considerations due to

preferences over donation that informs efficiency, stability and strategyproofness.

5.1 (Non-)Uniqueness

Is our mechanism unique? Consider the following mechanism g:

1. Identify components in G as in Figure 7d and match all agents according to Figure

7b if individually rational, and Figure 7c otherwise.

2. Denote matched agents as IK↔L and remove them from them for I: I ← I −IK↔L.

3. Match I according to f .

Intuitively, this mechanism matches all subsets of agents that belong to the isolated

component and have the described structure, and for the remaining agents implements f .
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Observe that the matches specified in Figure 7a is a maximum match that would arise in

our proposed mechanism f .

Theorem 5. g is a distinct mechanism from f that satisfies PE, IR, SP, and weak-core

stable.

Proof. Clearly g is individually rational. It is distinct from f by observing that, in the

isolated component, the kidney pairs would be matched by f instead of to the liver pairs

as in g.

Consider agents in the isolated component, if any. If it is individually rational for both

pairs of K-L pairs to be matched with one another, then g will match them. Otherwise,

they are not matched at this stage and they will be potentially matched under f . Observe

that as the L pairs get their best outcome, they have no incentive to misreport. If the K

pair misreports to say they are unwilling to match with a L pair, then they will remain

unmatched since they belong to an isolated component (hence are mutually compatible

with no other pair outside of the component) and their only potential match would be

the other K pair, which is already matched. Thus they would remain unmatched, which

is strictly worse for them according to their true preferences. Since f is IC, this whole

mechanism is IC.

The mechanism is PE as the pairs in the isolated component who can be improved,

that is the K pairs, can only be improved by unmatching with the L pairs, who have no

other matching possibilities. Since f is PE, the whole mechanism is PE.

To see pairwise stability, observe that in the isolated component the only agents that

K1 can’t form a blocking pair with any agent Ki since they are all matched to some Kj

and thus would not be strictly improved upon.

5.2 Impossibility Results

In this section we state some impossibility results in various cases. We collate the results

in the following theorem, whose details are explained subsequently.

Theorem 6. Consider a pairwise mechanism that is strategyproof, Pareto efficient, indi-

vidually rational, and pairwise stable. Then it cannot

1. hold for heterogeneous preferences,

2. maximize the number of transplants, or

3. satisfy neutrality
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Figure 8: Example compatibility graph observable characteristics.

Heterogeneous Preferences and Pairwise Exchanges. Our solution thus far relies

on this assumption of a common risk ordering. A natural question is whether this assump-

tion was necessary. That is, can we find an efficient, IR and strategyproof mechanism when

preferences over transplants can be arbitrary? Our following result shows that this is not

possible:

Proposition 12. Let preferences be arbitrary and only allow for pairwise exchanges. Then

there is no efficient, IR and strategyproof mechanism.

Proof. Consider Figure 8a. Let the pairs have the following preferences:

L ≻K1 K ≻K1 ∅

K ≻K2 L ≻K2 ∅

L ≻L1 K ≻L1 ∅

K ≻L2 L ≻L2 ∅

There are two possible matchings: {(K1, L1), (K2, L2)} or {(K1, K2), (L1, L2)}.
For the first matching, consider the case if L1 reports L ≻L1 ∅ ≻L1 K. To ensure

strategyproofness, we cannot allow our efficient (IR) matching under this new preference

profile to match L1 to L2. If we match K2 to L2, then the former would have an incentive

to report K ≻K2 ∅ ≻K2 L, which by efficiency and IR would result in K2 being matched

to K1. This would be a profitable deviation and thus not possible by strategyproofness.

Hence the only possible match is between K1 and K2. But this match is not efficient as

L1 and L2 can also be matched.

For the second matching, consider the case if L2 reports K ≻L2 ∅ ≻L2 L. As before,

we cannot allow our mechanism to match K2 and L2 by strategyproofness. If K1 and K2

are matched, then K1 reporting L ≻K1 ∅ ≻K1 K would be a profitable deviation as, by

efficiency and IR, K1 and L1 must be matched. Thus the only possible match would be
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K1

K2

L1

L2

Figure 9: G

between K1 and L1. However, again this match would not be efficient as K2 and L2 can

also be matched.

Since neither matchings are possible, then no mechanism that satisfies the stated prop-

erties exists.

Note that the restriction to pairwise exchanges is important. In the given example, the

cycle (K1, L1, L2, K2) would result in all agents getting their preferred choice. We explore

in later sections how removing limits on cycle size can give positive results when there are

heterogeneous preferences.

Transplant Maximization. One of our welfare criteria is transplant maximization. Is

it possible to have a mechanism that implements a maximal matching of the compatibility

graph, subject to individual rationality?

Proposition 13. There is no transplant maximal, strategyproof and IR mechanism, nor

a transplant maximal, pairwise stable and IR mechanism.

Proof. Observe that the transplant maximal matching given by {(K1, L1), (K2, L2)} is not
strategy proof or pairwise stable.

Equal Treatment of Exchange Pools. Implicitly, we are favoring kidney pairs over

liver pairs as a consequence of the risk ordering. This could be viewed unfavourably, and

we may want to consider a mechanism that treats either exchange pool equally. We say a

mechanism g satisfies neutrality if swapping organ labels (without changing preferences)

does not change the outcome. Note that f is not neutral:

Example 5. Consider the example in Figure 10, where the set of agents is I = {K1, K2, L1}
and the compatibility graph in Figure 10a is generated by the observable characteristics

in Figure 10b. Assume all donations are individually rational. Then f results in the

following matching: K1 and K2 matched via kidney donation. However if we swapped the
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K1

K2

L1

(a) G

I Patient Donor
K1 (B, 2) (A, 3)
K2 (A, 2) (B, 3)
L1 (AB, 2) (O, 1)

(b) Example observable characteristics

Figure 10: Compatibility graph and example observable characteristics. Note that the
patient of all pair is compatible with the donor of other pairs, but not with their own
donor.

K1

L2

L1

(a) G

L′1

K ′2

K ′1

(b) G′

I Patient Donor
K1, L

′
1 (B, 2) (A, 2)

L1, K
′
1 (A, 2) (B, 2)

L2, K
′
2 (B, 2) (A, 2)

(c) Example observable char-
acteristics

Figure 11: Compatibility graphs and example observable characteristics. Note that the
patient of all pairs is not compatible with their own donor.

organ labels, then for some K ∈ {K1, K2}, the following is the matching: K1 and K are

matched. △

We can see that there is no mechanism satisfying our desiderata while also being organ-

anonymous:

Proposition 14. There is no IC, IR, neutral and PE mechanism, and there is no IR,

neutral, PE and pairwise stable mechanism.

Proof. Consider the environments in Figure 11. An IR, PE and either IC or pairwise-stable

mechanism must match (K1, L1) in G and (K ′1, K
′
2) in G ′. Otherwise, pairs can misreport

their preferences to force a better match. Alternatively, there are blocking pairs. Note that

swapping labels maintains the same compatibility graph, but the outcomes are different.

Hence such a mechanism cannot be neutral.

5.3 Welfare Comparison with Non-Integrated Exchanges

A motivation for integrating exchange pools is to improve the number of transplants and

reduce the risks taken by donors. We characterize this by comparing our mechanisms with

a baseline efficient matching mechanism for each exchange pool separately.
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For o ∈ {K,L}, let bo be an efficient matching mechanism for agents in Io that uses some

priority order. Denote the joint mechanism by b, and f as our kidney-liver mechanism.

We consider the following metrics. For R ∈ R, A ⊆ I, D ⊆ {K,L, ∅}, and ϕ a mechanism,

Iϕ : R → R and Nϕ : R → R are defined as

IA,Dϕ (R) = {i ∈ A|ϕm[R](i) ∈ D}

and NA,D
ϕ (R) = |IA,Dϕ (R)|. In words, IA,Dϕ (R) is the set of agents in A who are matched

via some mode m ∈ D. When A = I or D = {K,L}, we will use suppress reference to

these variables. When comparing mechanisms, we consider the following criteria:

1. If for all R ∈ R, Nϕ(R) ≥ Nψ(R), then we say that ϕ weakly increases the

number of transplants over ψ.

2. If for all R ∈ R,

(a) NI
L,L

ϕ (R) ≤ NI
L,L

ψ (R) (less donors in the liver pool donate livers),

(b) NI
L,K

ϕ (R) ≥ NI
L,K

ψ (R) (more donors in the liver pool donate kidneys), and

(c) NI
K ,K

ϕ (R) ≥ NI
K ,K

ψ (R) (more donors in the kidney pool donate kidneys),

then we say that ϕ weakly reduces (unnecessary) donor risks over ψ.

To interpret the second comparison criteria, we say that unnecessary donor risks are re-

duced when there are less liver donations and more kidney donations from pairs in the

liver pool. We use the phrase unnecessary as indicating that more liver pairs can receive a

liver while undergoing a safe donation. Furthermore, note that kidney patients only donate

livers after exhausting their kidney donation opportunities, hence any liver donation on

their part is necessary.

Proposition 15. Let f and b use the same priority order. Then f weakly increases the

number of transplants and reduces donor risks over b.

Clearly there are environments where our claim holds strictly.

6 Simulations

In this section, we study in simulation the welfare impact of proposal to integrate more

donation modes into paired donor exchange. Our main welfare metric of interest when
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evaluating a matching is in the number of pairs matched. More sophisticated mechanisms

may be able to account for other welfare-relevant criteria, however that is beyond the scope

of this work. We primarily focus on integrating kidney and liver markets, and for simplicity

focus on left-lobe only donation.

Parameter Value

Blood Type Probabilities (ABO)

O: 0.37
A: 0.33
B: 0.21
AB: 0.09

Mean Sizes (cm)
Female (F): 157.40
Male (M): 170.70

Standard Deviation of Sizes (cm)
Female (F): 5.99
Male (M): 6.40

Sex Probabilities
Female (F): 0.3
Male (M): 0.7

Kidney to Liver Ratio 6274/32016 ≈ 0.196

Table 1: Configuration Parameters

We consider aggregate population statistics that determine biological compatibility

from South Korean patients, detailed in Figure 1, as in Ergin et al. (2020). For the same

reason as these authors, we consider this population due to the country being a world

leader in living liver transplantation. Because of this, gains from integration will be shown

in a realistic setting.

To construct our simulated population, we randomly sample n kidney (patient-donor)

pairs and m liver pairs according to the kidney-to-liver patient ratio listed. We only con-

sider patients that are incompatible with their donors, and their sexes are drawn randomly

from the listed probabilities. Given this, their blood types and relevant sizes are drawn

randomly, the latter of which is drawn from a normal distribution with the mean and

standard deviation as given. Finally, there is some independent probability p of an agent

being willing to donate a liver. For different choices of n and willingness probability p we

give a heatmap of the relative increase (Figure 12) and absolute increase (Figure 13) of

our integrated mechanism over the baseline mechanism, i.e. maximum matches in each

organ market separately. We report the average values over 100 random simulation for

these metrics.
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Figure 12: Relative Increase in Transplants
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Figure 13: Absolute Increase in Transplants
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7 Conclusion

In this work we consider a range of environments in paired organ exchange that share the

feature of incorporating new donation or transplantation technologies. Future work should

consider a more in-depth empirical analysis to understand the welfare gains of incorporating

richer preference information into the design of paired exchange mechanisms.
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A Proofs

A.1 Proof of Proposition 1

Proof. Consider a pairwise stable matching M ∈M. Assume for contradiction that M is

not weak core stable. Then there is a set of agents U and a matching M ′ that is strictly

improving for all agents in U . Let i be an agent matched in M ′. Note that there must

be some agent matched since M was an IR matching and all agents in U were strictly

improved upon. Thus there are at least two agents i and j who are matched to each other

in M ′. Since i and j strictly preferred to be matched each other than their matching in

M , they form a blocking pair. This contradicts the pairwise stability of M . Thus, M is

weak-core stable.

A.2 Proof of Theorem 1

Proof. Let ϕ be the Preference Adaptive algorithm of Ergin et al. (2020). IR, strate-

gyproofness and efficiency directly follows from the proof in Ergin et al. (2020).

Recall that individual rationality and pairwise stability are a necessary and sufficient

condition for a matching to be weak-core stable. Assume for contradition that there is a

preference profile ≻ such that M = ϕ(≻) is not weak-core stable. Then there is a pair

i, j and m,m′ ∈ M such that i is compatible via m with j, j is compatible via m′ with i,

m ≻i MM(i), and m′ ≻j MM(j).

Note that we do not need to consider the case where either agent receives a match via

m1, that is MM(i) = m1 or MM(j) = m1, as there is no means by which either agent can

strictly improve their match.

Consider the case whereMM(i) =MM(j) = ∅. Given that they were not matched inM ,

and the final step output a maximum matching, it must be that either i or j are unwilling

to be matched via m2. Without loss of generality, assume it is i. Then m2 ≺i ∅ =MM(i),

so it must be that m = m1. Since a maximum match via m1 bilaterally was found in the

first step, it must be that m′ = m2 and i ̸∈ Im1↔m1 . Thus both agent are in I − Im1↔m1 .

Since i → j, it must be that j is transformed first. When i is reached when processing

the topological order, it must be that in M , i is removed from the graph given that they

are unwilling and unmatched. However, i is matchable with j, and there cannot be any

promises that cannot be any promises that restrict this as both agents are unmatched at

the end of the algorithm. Hence i would be promised an exchange via m1, which is a
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contradiction.

Now consider the case where MM(i) = m2 and MM(j) = ∅. Since both agents strictly

improve their outcome, it must be that m = m1 and m′ ∈ {m1,m2}. If m′ = m1, then i

and j are both matchable via m1 with each other while keeping all promises in the second

step. This is a contradiction as they would have both been promised a match via m1. Now

consider m′ = m2. Since i is not matched via m1, they must have not been promised a

match in the second step. Since j is unmatched and i ∈ I − Im1↔m1 , then j would be

transformed to an m2 agent, since they must be willing for m′ to be individually rational,

and i would be matchable with them via m1. This is a contradiction as i is not matched

via m1. Note that a symmetric argument applies for MM(j) = m2 and MM(i) = ∅.
Finally, consider the case where MM(i) = MM(j) = m2. Then it must be that m =

m′ = m1. By the same logic in the previous paragraph, this is not possible. As in all cases

it is impossible for there to be a blocking pair, it cannot be that there is a blocking pair.

Hence the mechanism is pairwise stable, and consequently weak-core stable.

A.3 Proof of Proposition 3

Proof. Fix E ∈ E. We proceed by considering two cases: the simple cycle has even length,

or odd length.

First consider a simple cycle C = (i1, j1, ..., iK , jK) of length 2K. Note that it must

be that K > 1, since otherwise we have that i1 → i2 → i1, which is a contradiction as

i1 can donate to i2 via m1 but the latter cannot donate to the former via m2. Assume

for contradiction that there is a desirable mechanism f . Note that C contains agents of

distinct types. Let I = C, and assume all agents find m2 feasible. By efficiency, there is

some two successive agents matched. Without loss let this be i1 and j2. Furthermore, i1

donates via m1 and j2 donates via m2 since no agents are mutually compatible via m1,

and if they were both matched via m2 there would be a Pareto improvement by having

one agent donate via m1 since by assumption, that is possible. If j1 report that m2 is not

IR, then j1 is unmatched in C ′ by strategy-proofness. If i2 is unmatched, then there would

be a Pareto improvement by matching j1 and i2. Thus i2 must be matched with j2. If j2

misreports, then i3 and j3 must be matched by the same argument. Inductively continuing

this process of progressive misreporting, we find that if jK misreports, then i1 must be

matched with j1. However this is not individually rational for j1 since they reported that

m2 is not individually rational. Thus there does not exists a desirable mechanism.

Now consider a simple cycle C = (i1, j1, ..., iK , jK , iK+1) of length 2K+1 forK ≥ 1, since
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cycles of length 1 would result in a contradiction as before. Again, assume for contradiction

that there is a desirable mechanism. If all agents are willing, then by efficiency there must

be some matched agent. Let (i1, j1) be matched without loss of generality. Now assume i1

becomes unwilling. We now proceed with an induction argument to show that for any K,

there is a contradiction. Consider the base case, K = 1. Hence we have that (i1, i2) are

matched, and i3 is unmatched. If i2 says they are unwilling, then we have that they must

be matched with i3 by Pareto efficiency. However, this would contradict strategproofness.

Let the inductive hypothesis be that if we have a chain of length 2K + 1 where (i1, j1) are

matched when i1 is willing, then there is a contradiction. Consider 2K + 3. Then either

(i1, j1) or (j1, i2) are part of the matching. If this did not hold, then it must be that neither

i1 or j1 are matched with any agent, due to individual rationality. However there would

be a Pareto improvement to matching both agents together, which is a contradiction. If it

is the case that (j1, i2) are matched, then observe that there are an even number of agents

(apart from i1) and thus we can use the argument from the even cycle setting to obtain

a contradiction. Hence consider the case that (i1, j1) are matched. If j1 is unwilling, then

by strategyproofness, they cannot be matched with i2. To maintain Pareto efficiency, we

have that (i2, j2) are matched. Observe that the chain (i2, . . . , iK+2) is of length 2K + 1,

hence we obtain a contradiction through the inductive hypothesis.

A.4 Proof of Proposition 4

Proof. Note that if i → j, then j can donate to i but i can’t donate to j. For simplicity,

and to be in line with previous definition of the direction of the arrow, we flip the direction

of every arrow to mean that i can donate to j but j can’t donate to i. This preserves all

cycles. First we show that the above cycle is the only cycle in the graph. Consider some

cycle C = (i1, i2, ...). Since i2 cannot donate to i1 via m1, then it must be that i2’s donor

A, B or AB. Furthermore this must be true for every agent’s donor since this a cycle.

Since i1’s donor is A, B or AB, then consider the following cases: i1’s donor is

• A: i2 is A or AB

• B: i2 is B or AB

• AB: i2 is AB

If i2 is

• A: i3’s donor is B or AB
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• B: i3’s donor is A or AB

• AB: not possible as any type can donate to AB

Hence we can conclude that no agent has type AB. Thus agents can only have type A or

B, since there are no donors that can donate to O agents. If there is an AB donor, there

must be an AB agent. Hence there are no AB donors either. Thus if i1 is

• A: i2’s donor is B

• B: i2’s donor is A

Consider i1 having patient-donor type A−A. Then i2 must be either A−B. i3 must then

be B−B, i4 is B−A, and i5 is A−A. Since all possible types are in this cycle, and their

successor is uniquely determined, this is the only cycle. Since there is a cycle, the graph

is not acyclic. To see that it is weakly acyclic, note that B − A and A − B are mutually

compatible. Hence all cycles in this graph have m1-mutually compatible.

A.5 Proof of Proposition 5

Proof. Consider some cycle C = (i1, i2, ...). Since i1 is not compatible with i2’s first donor,

then i2 must be of type A, B or O since if they were AB, then they would be compatible

any donor. Since this is a cycle, then average agent is of type A, B or O. Furthermore,

given that i1’s first donor can donate to i2, then i1’s first donor must be of type A, B or

O. Again, this must be true for all agents. Since i2’s first donor is not compatible with

i1, then i2’s first donor cannot be O as they are compatible with all agents. This implies

that i1’s first donor cannot be O, hence i2 cannot be O either. Thus every patient and

every first donor is either A or B. Consider the patient-donor tuple A− A−X, where X

is the the type of the second donor. If corresponded to i1, then i2 must be A − B − X.

Furthermore, i3 will be B − B −X, i4 will be B − A−X, and i5 will be A− A−X. All

cycles must have this form as any agent will have a type in this cycle, and their successor

will have the same form. Clearly such a cycle exists (as given by the previous example),

hence the digraph is acyclic. To see that this is weakly acyclic, note that i2 and i4 are

m1-mutually compatible since they can donate to each other via their first donor. Hence

all cycles in this graph have m1-mutually compatible agents.
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A.6 Proof of Theorem 2

Proof. Clearly the mechanism is individually rational.

We now prove Pareto efficiency. Assume for contradiction that there is a matching

M ′ that Pareto dominates the M = ϕ(≻). Let i be such that M ′
M(i) = m′ ≻ m =

MM(i). We proceed by strong induction on Imk↔ml
, the set of agents matched via an

mk-ml swap, to show that no i in these set can be improved upon. k, l are ordered as

follows: (1, 1), . . . , (1, |M|), (2, 2), . . . , (2, |M|), . . . , (k, k), . . . , (k, |M|), . . . , (|M|, |M|). In
other words it is generated by the following process: L = {}

• For k ∈ {1, . . . , |M|}:

– For l ∈ {k, . . . , |M|}

∗ L← L ∪ {(k, l)}

Let ▷ represent the order over L. Let I∅←mk
be the set of agents in Ak that were unmatched

in M . Observe that all agents that are matched must belong to one of these sets.

Consider the base case k = l = 1. Clearly no agent in this set can be strictly improved as

all agents are matched via m1, the best modality to be matched via. Assume the induction

hypothesis holds, that no set prior to (k, l) can have an agent strictly improved upon. Now

consider the successor to (k, l). There are two possibilities: l < |M| or l = |M|.
Consider the first case, then the successor to (k, l) is (k, l + 1). Consider an agent

i ∈ Imk↔ml+1
that donates via mk in M . To improve, they must be matched via mk′ .

Furthermore, by separability, any agent they match with must donate via ml+1. Assume

that in M ′ they are in I ′mk′↔ml+1
. Either Imk′↔ml+1

⊆ I ′mk′↔ml+1
or not. In the former

case, note that since our algorithm iterates in the same order ▷, then agent i is unmatched

in the step of the algorithm that matches agents in Imk′↔ml+1
. This is a contradiction as

we compute a maximum match, however we can strictly increase the size of the match by

including i and MI(i). In the latter case, we have some agent j previously in Imk′↔ml+1

that is no longer in I ′mk′↔ml+1
. Since M ′ Pareto dominates M , it must be that j is strictly

improved upon. This contradicts the inductive hypothesis. A similar argument can be

made for the successor being (k + 1, l).

Now consider i ∈ I∅←mk
. To strictly improve on them, they must be matched via some

modality ml. Hence by separability they are in I ′ml←mk
. We can apply a similar argument

to the previous paragraph to show that it must be that some agent previously in Iml←mk
is

strictly improved upon (due to maximality of the match). Again, this is a contradiction as
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we showed that no agent previously matched can be strictly improved upon. As all agents

belong in some I∅←mk
or Iml←mk

, and no agents from these sets can be strictly improved

upon, then the existence of a Pareto dominating matching M ′ is a contradiction. Thus M

is Pareto efficient.

Now we show strategyproofness of the mechanism. Fix ≻ and M = ϕ(≻). Consider

some deviation by agent i to ≻′i ̸=≻i, and let the resulting matching be M ′ = ϕ(≻′) where
≻′= (≻′i,≻−i). Letmk =MM(i), and letml andmn be the least modality such thatml ≻i ∅
andmn ≻′i ∅. By individual rationality, we have that k ≥ l. Consider the case where n > k.

ThenM ′
M(i) = ∅ is the outcome of the algorithm, that is i is unmatched and thus a strictly

worse outcome since M was individually rational. Hence this is not a profitable deviation.

If k > n, then there is no change in the outcome. That is MM(i) = M ′
M(i). Hence

there is no profitable deviation. Thus there is no profitable deviation for i, and thus ϕ is

strategyproof.

We conclude with showing weak-core stability. Recall that it is sufficient for us to show

the pairwise stability holds, as weak-core stability is equivalent to individual rationality

and pairwise stability for matchings. Assume for contradiction that there is a pair of agents

i and j that form a blocking pair. That is, there existsm andm′ such that i→m j, j →m′ i,

m ≻ MM(i), and m′ ≻ MM(j). By separability, j ∈ Am and i ∈ Am′ . Without loss of

generality, assume m ⪰ m′. Consider the step of the algorithm corresponding to Im↔m′ .

Observe that the size of this set can be improved by matching i and j, and that neither

agent would be matched at this stage as (MM(i),MM(j))▷ (m,m′) since m ≻MM(i) and

m ⪰ m′. This contradicts the set being maximum, which must be case since the algorithm

implements a maximum (bipartite or general) match amongst all agents that find such a

match feasible and have not been previously matched, and thus this is not possible. Hence

the mechanism is pairwise stable, and along with individual rationality implies weak-core

stability.

A.7 Proof of Theorem 3

Proof. Clearly the mechanism is individually rational.

We now prove Pareto efficiency. Assume for contradiction that there is a matching M ′

that Pareto dominates the M = ψ(≻). Let i be such that M ′
M(i) = m′ ≻ m = MM(i).

We proceed by strong induction on Imk↔ml
, the set of agents matched via an mk-ml swap

for mk and ml in different elements of the partition {Mi}, and IMk
, the agents in ∪l∈Ml

Al

matched under ϕk, to show that no i in any of these set can be strictly improved upon.
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Consider the following order ▷:

M1, (M1
1,M1

>1), . . . , (M1
1,M−1

>1),

(M2
1,M1

>1), . . . , (M−1
1 ,M1

>1), . . . ,

(M−1
1 ,M−1

>1), . . . ,Mk,

(M1
k,M1

>k), . . . , (M−1
k ,M−1

>k), . . . ,M−1

In other words, it is generated by the following process: L = {}

• For k ∈ {1, . . . , |M|}:

• L← L ∪ {Mk}

• For l ∈ {i, . . . , |Mk|}

– For m ∈ ∪n>kMn:

∗ L← L ∪ {(Ml
k,m)}

Let I∅←Mk
be the set of agents in Ak that were unmatched in M . Observe that all

agents that are matched must belong to one of the sets described.

Consider the base case a =M1. No agent in the set A1 can be strictly improved as all

agents are matched via a modality inM1 since the ϕ1 is Pareto efficient, because otherwise

an improvement would mean that some agents can be matched by a better modality m′

without making anyone else worse off. Due to the risk ordering ofM, there are no better

modalities than those inM1 and thus no agent can be improved upon to a modality outside

ofM1. Furthermore, no agent can be improved to a modality m′ ∈M1 better than m. If

this were not the case, then this would contradict the Pareto efficiency of ϕ1.

Assume the induction hypothesis holds, that no set prior to and including a ∈ L can

have an agent strictly improved upon (while ensuring all other agents are at least weakly

improved upon). Now consider the successor to a, denoted b. Either

• a =Mk, and b = (M1
k,M1

>k), or

• a = (Ml
k,Mm

>k) such that m < |M>k|, and b = (Ml
k,Mm+1

>k ), or

• a = (Ml
k,Mm

>k) such that l < |Mk| and m = |M>k|, and b = (Ml+1
k ,M1

>k), or

• a = (Ml
k,Mm

>k) such that l = |Mk| and m = |M>k|, and j =Mk+1.
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Note that in every case, for an agent i matched in b, to improve upon them requires

that they be matched to a willing agent j (that they are not matched with) where j →m̂j
i

for m̂j ∈ M(i), i →m̂i
j for m̂i ∈ M(j). If M(i) = M(j), then this would contradict

efficiency of ϕk as i and j would be matched in ϕk, unless an agent already matched

in ϕk were improved upon. By the inductive, assumption, no previously matched agent

can be improved upon. If M(i) ̸= M(j) then it must be that m̂i ∈ M<k. This would

contradict the efficiency of the bipartite match between willing agents, unless (again) an

agent matched via this were also strictly improved upon. By same argument as before,

this is not possible. We can apply a similar argument for unmatched agents.

By the inductive argument, this match is efficient. To see strategyproofness, observe

that any misreport outside of the agent’s partition element to a more preferred mode does

not increase any agent’s chance to be matched, and any misreport to a less preferred more

either does not change the outcome for the agent, or causes them to be matched via a

mode less preferred to being unmatched. Thus we can conclude on strategyproofness of

the mechanism. Furthermore, misreports within the agent’s partition element does not

affect the algorithm until the the mechanism corresponding to that partition is used. Since

the mechanism is strategyproof, there is no profitable deviation.

To see pairwise stability, and thus also weak-core stability, note that if two agents

preferred to be matched to one another over their partner, then by virtue of the algorithm,

if they were in the same partition then this would contradict pairwise stability of the

corresponding mechanism, and if they were part of different partition elements then they

would have been bipartite matched earlier in the algorithm.

A.8 Proof of Proposition 8

Proof. Observe the following. First, no two Pi have type AB. If this were not the case,

for example P1 = P2 = AB, then every donor of P1 and P2 could donate to the other

patient. This contradicts with the set of feasible pairwise matches, which does not have

this property for any pair of patient-donor groups. This implies that d1i ̸= AB for all i. To

see this, note that for each d1i , they can donate to two other patients. If for contradiction we

had that for some i, d1i = AB, then we would have that there are two AB patients because

AB donors can only donate to AB patients. Furthermore, we have that for i ∈ {2, 3, 4},
Pi ̸= AB. To see this, consider P2 = AB for contradiction. We have that d12 − d24 is a

feasible pairwise exchange. As such, d12 can donate to P4, and since all donors can donate

to P2 = AB, then so can d14. However d
1
2 − d14 is not a feasible pairwise exchange, which is
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a contradiction. We can apply the same argument to the case where P3 = AB or P4 = AB

(but note that it does not apply to P1). Finally, observe that Pi ̸= O for i ∈ {2, 3, 4}. If

this were not true, for example P2 = O, then we would have that d11 = d24 = O. Given that

O donors can donate to any agent, we would have that d11−d24 would be a feasible exchange.

This is a contradiction with the set of feasible exchanges given. The same argument applies

to P3 = O or P4 = O.

Using these facts, we proceed by considering various possible cases. First consider the

case that P1 = AB, thus any donor can donate to P1. This implies d1 ̸= O, which follows

because if d1 = O, then we would have that any exchange is feasible for P1 as P1 can

receive from any donor as they are AB and d11 can donate to any patient as they are

O. Recall that d11 ̸= AB, hence d11 ∈ {A,B}. Consider the case that d11 = A, and thus

P2 = P3 = P4 = A (because none of these patients can be AB). Hence we must have that

d22 ∈ {A,O} because d22 − d13 is feasible and P3 = A, which means d11 − d22 is feasible and

thus a contradiction. A similar proof applies when we instead assume that d1 = B. As we

have considered all the possible cases for choice of blood type of d1 given P1 = AB, and

they all lead to contradictions, we cannot have that P1 = AB.

Now consider the case where P1 = O. As O patients can only receive from O donors,

then we have that d12 = d13 = d14 = O. This would imply that d13 − d14 is feasible, which

is a contradiction. Hence we must have that P1 ∈ {A,B}. Recall that we also have

P2 ∈ {A,B}.
Consider P1 = P2 = A. Thus we must have that d11, d

2
4 ∈ {O,A}. If d11 = O, then this

would imply that d11 − d24 is feasible, which is a contradiction. If d11 = A, then P4 = A

(as it cannot be AB). Furthermore, if d24 can donate to P2 = A, then it can also donate

to P1 = A. And since d11 can donate to P4, we have that d11 − d24 is feasible, which is a

contradiction. The same idea applies to P1 = P2 = B.

Now consider P1 = A and P2 = B (the same idea applies for P1 = B and P2 = A). Note

that d11, d
2
4 ∈ {B,O}, because both donors can donate to P2 = B. If d11 = d24 = O, then we

would have d11 − d24 is feasible, which is a contradiction. If d11 = B and d24 = O, then we

have that d11 − d24 is feasible, which is also a contradiction. Consider d11 = O and d24 = B.

Because d11 − d14 is feasible and P1 = A, it must be that d14 ∈ {O,A}. If d14 = O, then

d14−d12 would be feasible, which a contradiction. Hence it must be that d14 = A. Given that

d11 = O can donate to P2, but d
2
2 cannot donate to P1 = A because d11 − d22 is not feasible,

it must be that d22 ∈ {B,AB}. First consider d22 = B. In this case, note that P4 ∈ {O,A}
because d24 is compatible with P2 but d22 = B is not compatible with P4 as d22 − d24 is not
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feasible. If P4 = O, then we must have that d12 = O as d12 − d24 is feasible. But this is a

contradiction because we would have that d13 − d12 is feasible. If P4 = A, then this would

imply that d12 = {A,O}. It must be that d12 = A, as if d12 = O then we would have that

d12 − d13 is feasible, which is a contradiction. Given this, we must have that P3 ∈ {B,O}
so that d12 − d13 is not feasible (as d12 = A). By our previous observation, it cannot be that

P3 = O. Hence if P3 = B, we would get a contradiction as d23−d24 would be feasible because

d23 is compatible with P4 given the set of feasible exchanges, and d24 = B and P3 = B by

assumption. Thus we cannot have that d22 = B, so it must be that d22 = AB. This would

imply that P3 = AB, which is a contradiction with out observation that P2, P3, P4 ̸= AB.

Now we consider the final case, that is d11 = d24 = B. This implies that P4 ∈ {B,O} as
d11 − d14 is feasible and d11 = B by assumption. If P4 = B, then d23 ∈ {B,O} as d32 − d14 is

feasible and these are the only feasible blood types that can donate to P4 = B. In either

case, we would have that d22−d32 is feasible because P2 = B, which is a contradiction. Thus

it must be that P4 = O. However this contradicts our earlier observation that P4 ̸= O. As

such it cannot be that P1 = A and P2 = B (or by an analogous argument that P1 = B

and P2 = A). As we have gone through all cases, and shown that there is no choice of

blood types that are consistent with this set of feasible exchanges, then this set is not

rationalizable.

A.9 Proof of Proposition 9

Proof. Consider the following agents, that is patients with donors (that may or may not

be feasible):

• {i, j, k} each with an O patient and {O,B} donors.

• l with an B patient and an O donor.

Observe that for any of {i, j, k} to match with each other, it must be through their O

donor, and to match with l can be through either donor. However to use their B donor,

they must match with l. We will define a match by the agents participating in it, with their

favourite donor used implicitly. For example (i, j) means that the donate to each other

via their O donors. We say a match is valid if it is efficient and IR given the preferences

considered.

Assume for contradiction that there is a desirable mechanism. Fix l’s preference as
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O ≻ ∅. Now consider the following preference profile ≻1 for {i, j, k}:

i : B ≻ ∅ ≻ O

j : B ≻ ∅ ≻ O

k : B ≻ ∅ ≻ O

Without loss of generality, let the valid allocation in the desirable mechanism match (i, l)

together. Consider the following profile ≻2:

i : O ≻ B ≻ ∅

j : B ≻ ∅ ≻ O

k : B ≻ ∅ ≻ O

Since (i, j) and (i, k) are not IR, then to maintain strategyproofness we must have (i, l)

match. Now consider the following ≻3:

i : O ≻ B ≻ ∅

j : B ≻ O ≻ ∅

k : B ≻ ∅ ≻ O

The valid matches are {(i, j), (k, l)} and (j, l). However choosing the latter would violate

strategyproofness as there would be a profitable deviation for j to misreport in preference

profile ≻3 into ≻2 where they go from being unmatched to being part of an individually

rational match. Hence let the match here be {(i, j), (k, l)}. Now consider the following ≻4:

i : O ≻ ∅ ≻ B

j : B ≻ O ≻ ∅

k : B ≻ ∅ ≻ O

Note that (j, l) is valid but not strategyproof, as otherwise i will misreport from ≻4 to

≻3 and get from being unmatched to matched with j. Thus the only valid match is

52



{(i, j), (k, l)}. Now consider the following ≻5:

i : O ≻ ∅ ≻ B

j : B ≻ ∅ ≻ O

k : B ≻ ∅ ≻ O

Note that (j, l) is valid but again not strategyproof, as otherwise j in ≻4 would misreport

in ≻5 to ≻4 and go from (i, j) to (j, l), which is a strictly better outcome for them. Hence

the only valid outcome is (k, l). Now consider the following ≻6:

i : O ≻ ∅ ≻ B

j : B ≻ ∅ ≻ O

k : B ≻ O ≻ ∅

Observe if (k, l) is not the valid match chosen here, then k in ≻6 will misreport to ≻5 to

get this match and thus strictly improve. Hence (k, l) is the outcome here. Now consider

the following ≻7:

i : O ≻ B ≻ ∅

j : B ≻ ∅ ≻ O

k : B ≻ O ≻ ∅

There are two valid outcomes here: {(i, k), (j, l)} and (k, l). Note that the former would

not be strategyproof, as otherwise we would have i misreport from ≻6 to ≻7 and thus go

from being unmatched to being matched in a valid outcome. However the latter would also

not be strategyproof, as k in ≻2 would misreport to ≻7 and go from being unmatched to

being matched in a valid outcome. Thus there is no way of choosing a valid match. Hence

there is no desirable mechanism.

A.10 Proof of Theorem 4

Proof. Note that individual rationality clearly holds.

First we prove efficiency. We will construct a sequence , i1 → i2 → . . . , where in → in+1

means that in is matched with in+1’s partner in M
′, and in+1 has a new partner in M ′. We

see this as in stealing in+1’s partner in M . For three cycles, we don’t allow two different
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agents to steal from the same agent, and we specify which agent is in+1. Note that i0 steals

first, in the sense that the agent they are pointing to can no longer use that agent. Hence

this kicks off a chain of stealing from different agents where no two agents steal from the

same agent. Thus there are infinitely many agents (a contradiction).

First consider the case that there are no A−B∗ after step 3, hence i0 is either O−B∗
or O − A∗ as all A− ∗ get their first choice and cannot be strictly improved upon.

Note that for any agent stolen from that was in a three cycle in M , only one item is

stolen from them. Hence no agent is stolen from twice.

We proceed by cases.

Consider i0 is O − B∗ ummatched in M and improved to B in M ′, or i0 is O − A∗
unmatched in M and improved to A in M ′.

1. The following are what can be stolen from whom:

(a) B −O∗ are stolen from

i. O −B∗
ii. O − A,B∗
iii. O − A∗ (M: B −O → O − A→ A−B)

(b) A−O∗11 are stolen from

i. O − A∗
ii. O −B,A∗

2. We now specify the rule for stealing:

(a) If in = O −B∗ or in = O − A,B∗ and is matched via B in M ′, then

i. if in M ′ they are O −B ↔ B −O: they steal B −O∗
ii. if in M ′ they are O −B → B − A→ A−O: they steal A−O∗

(b) If in = O − A∗ or in = O −B,A∗ is matched via A in M ′

i. if in M ′ they are O − A→ A−B → B −O: they steal B −O∗
ii. if in M ′ they are O − A↔ A−O: they steal A−O∗

3. All agents point to distinct agents and i0 cannot be stolen from as they are un-

matched, hence there are no cycles.

11Note that we need not consider A−B,O∗ as all A−∗ get their top choice in the case where there are
no A−B∗ after step 3.
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Consider i0 is O −B,A∗ matched with A−O in M (and thus improved to B).

1. The following are what can be stolen from whom:

(a) B −O∗ are stolen from

i. O −B∗

ii. Not possible is O−A,B∗, as this would contradict PE of Serial Dictator in

the construction of M

iii. A−B∗ (M: B −O → O − A→ A−B)

(b) B − A∗ are stolen from

i. A−B∗

2. We now specify the rule for stealing:

(a) If in = O −B∗ and is matched via B in M ′, then

i. if in M ′ they are O −B ↔ B −O: they steal B −O∗

ii. if in M ′ they are O −B → B − A→ A−O: they steal B − A∗

(b) If in = O −B,A∗ strictly improves to B in M ′

i. if in M ′ they are O −B → B − A→ A−O: they steal B − A∗

ii. if in M ′ they are O −B ↔ B −O: they steal B −O∗

(c) If in = A−B∗ is matched via B in M ′

i. if in M ′ they are O − A→ A−B → B −O: they steal B −O∗

ii. if in M ′ they are A−B ↔ B − A: they steal B − A∗

3. i0 is not stolen from and thus there is no cycle.

Consider i0 is O − A,B∗ matched with B −O in M (and thus improved to A).

1. The following are what can be stolen from whom:

(a) A−O∗ are stolen from

i. O − A∗ (matched via A in M)

ii. Not possible is O−B,A∗, as this would contradict PE of Serial Dictator in

the construction of M
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(b) A−B∗ are stolen from

i. B − A∗
ii. O − A∗ (A−B → B −O → O − A)

2. We now specify the rule for stealing:

(a) If in = O − A,B∗ strictly improves to A in M ′

i. if in M ′ they are O − A→ A−B → B −O: they steal A−B∗
ii. if in M ′ they are O − A↔ A−O: they steal A−O∗

(b) If in = O − A∗ and is matched via A in M ′ (they were matched via A in M ,

hence also match via A in M ′), then

i. if in M ′ they are O − A↔ A−O: they steal A−O∗
ii. if in M ′ they are O − A→ A−B → B −O: they steal A−B∗

(c) If in = B − A∗ is matched via A in M ′

i. if in M ′ they are O −B → B − A→ A−O: they steal A−O∗
ii. if in M ′ they are A−B ↔ B − A: they steal A−B∗

3. i0 is not stolen from and thus there is no cycle.

Consider i0 is O − B,A∗ unmatched in M , improved to A in M ′, or i0 is O − A,B∗
unmatched in M , improved to B in M ′.

1. The following are what can be stolen from whom:

(a) B −O∗ are stolen from

i. O −B∗
ii. O − A,B∗
iii. O − A∗ (M: B −O → O − A→ A−B)

(b) A−O∗ are stolen from

i. O − A∗
ii. O −B,A∗

2. We now specify the rule for stealing:

(a) If in = O −B,A∗ is matched via A in M ′
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i. if in M ′ they are O−A→ A−B → B −O or O−B ↔ B −O: they steal

B −O∗

ii. if in M ′ they are O − A↔ A−O: they steal A−O∗

(b) If in = O −B∗ or in = O − A,B∗ and is matched via B in M ′, then

i. if in M ′ they are O −B ↔ B −O: they steal B −O∗

ii. if in M ′ they are O −B → B − A→ A−O: they steal B − A∗

(c) If in = O − A∗ or in = O −B,A∗ and is matched via A in M ′, then

i. if in M ′ they are O − A↔ A−O: they steal A−O∗

ii. if in M ′ they are O − A→ A−B → B −O: they steal B −O∗

3. Each agent points to a distinct agent, and since i0 is unmatched in M , there is no

cycle.

Now consider the case where there are no B − O∗ after step 3. Hence i0 is A − B∗,
O − A∗ or O −B∗.

Consider i0 is A−B∗ matched with A−A∗, O −A∗, O −B,A∗ or unmatched in M ,

and they are improved to B.

1. The following are what can be stolen from whom:

(a) B −O∗ are stolen from

i. A − B∗ (in M , B − O is only matched via A − B → B − O → O − A, so
they must be matched via B in M ′)

(b) B − A∗ are stolen from

i. A−B∗ (must be matched via B in M ′ as in M they are)

2. We now specify the rule for stealing:

(a) If in = A−B∗ matches via B in M ′

i. if in M ′ they are O − A→ A−B → B −O: they steal B −O∗

ii. if in M ′ they are A−B ↔ B − A: they steal B − A∗

3. i0 is not stolen from and thus there is no cycle.
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Note that we need not consider the case where i0 is A − B,A∗ or A − B,O∗ that are
unmatched in M and improved to their second donor in M ′ as they are always guaranteed

their second donor in M . Also the case where O−A,B∗ is matched with B −O∗ in M is

not possible due to the assumption that there is no B −O∗ after step 3.

Consider i0 is O−A∗ unmatched in M , i0 = O−A,O or O−A,B,O is matched with

O −O in M and is improved to their A donor in M ′.

1. The following are what can be stolen from whom:

(a) A−O∗ are stolen from

i. O − A∗ (must be matched via their top donor)

ii. O −B,A∗ (must be matched via their top two donors)

(b) A−B,O∗ (matched via their second donor in M ′, so they must be matched via

their second donor in M to preserve efficiency)

i. O − A∗ (must be matched via their top donor)

ii. O −B,A∗ (must be matched via their top two donors)

(c) B −O∗ are stolen from

i. O−A∗ (In M , they are matched in A−B → B −O → O−A, so they get

their top donor in M ′)

2. We now specify the rule for stealing:

(a) If in = O − A∗ or in = O −B,A∗ matches via A in M ′

i. if in M ′ they are O − A→ A−B → B −O: they steal B −O∗

ii. if inM ′ they are O−A↔ A−O: they steal A−O∗ or A−B,O∗ (matched

via second donor in M ′)

(b) If in = O −B,A∗ matches via B in M ′

i. if in M ′ they are O −B ↔ B −O: they steal B −O∗

ii. if inM ′ they are O−B → B−A→ A−O: they steal A−O∗ or A−B,O∗
(via second donor)

3. i0 is not stolen from and thus there is no cycle.

Consider i0 is O − A,B∗ unmatched in M and is improved to their B donor in M ′.
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1. The following are what can be stolen from whom:

(a) B −O∗ are stolen from

i. A−B∗ (In M , they are matched in A−B → B −O → O−A, so they get

their top donor in M ′)

(b) B − A∗ are stolen from

i. A−B∗ (matched via their top donor)

2. We now specify the rule for stealing:

(a) If in = O − A,B∗ matches via B in M ′

i. if in M ′ they are O −B → B − A→ A−O: they steal B − A∗

ii. if in M ′ they are O −B ↔ B −O: they steal B −O∗

(b) If in = A−B∗ matches via B in M ′

i. if in M ′ they are A−B → B −O → O − A: steal B −O∗

ii. if in M ′ they are A−B ↔ B − A: steal B − A∗

3. i0 is not stolen from and thus there is no cycle.

Consider i0 is O−B∗ unmatched in M , or i0 = O−B,A∗ is matched with A−O, and
is improved to their B donor in M ′.

1. The following are what can be stolen from whom:

(a) B −O∗ are stolen from

i. A−B∗ (In M , they are matched in A−B → B −O → O−A, so they get

their top donor in M ′)

(b) B − A∗ are stolen from

i. A−B∗ (matched via their top donor)

2. We now specify the rule for stealing:

(a) If in = O −B∗ matches via B in M ′

i. if in M ′ they are O −B → B − A→ A−O: they steal B − A∗

ii. if in M ′ they are O −B ↔ B −O: they steal B −O∗
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(b) If in = A−B∗ matches via B in M ′

i. if in M ′ they are A−B → B −O → O − A: steal B −O∗

ii. if in M ′ they are A−B ↔ B − A: steal B − A∗

3. i0 is not stolen from and thus there is no cycle.

Consider i0 is O −B,A∗ unmatched in M and is improved to their A donor in M ′.

1. The following are what can be stolen from whom:

(a) B −O∗ are stolen from

i. O − A∗ (in M , O − A→ A−B → B −O)

(b) A−B,O∗ (matched via second donor) or A−O∗

i. O − A∗

ii. O −B,A∗ (matched second donor in M , so must be top two in M ′)

2. We now specify the rule for stealing:

(a) If in = O −B,A∗ or in = O − A∗ matches via A in M ′

i. if in M ′ they are O − A→ A−B → B −O: they steal B −O∗

ii. if in M ′ they are O − A↔ A− O: they steal A− O∗ or A− B,O∗ (can’t
be A−B,O,A matched via A in M as then i0 would have selected them)

(b) If in = O −B,A∗ matches via B

i. if in M ′ they are O −B → B −O: they steal B −O∗

ii. if inM ′ they are O−B → B−A→ A−O: they steal A−O∗ or A−B,O∗

3. i0 is not stolen from and thus there is no cycle.

Now we show strategyproofness. Consider an agent B − B∗, which is guaranteed to

be matched in the first step via B. Thus they have no incentive to deviate. Consider an

agent B − A∗, who are guaranteed to be matched in the second step via A and thus have

no incentive to deviate. Similarly, B − O∗ is guaranteed to be matched via O either in

step 3 or step 6, due to our long-side assumption.

Consider A−B∗. Those matched in step 2 or step 3 get their best match, hence have

no incentive to deviate. If there are no B −O∗, then all A−B∗ have been matched (due
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to the assumption that there is a surplus of O−A∗) hence there are no A−B∗ agents that
have an incentive to deviate. If there are A−B∗ that remain, then all B −O∗ have been

matched. All B − ∗ have been matched at this point, and the algorithm does not allow

A − B∗ to use their B donor. Note that they have no incentive to list other donors as

first, as only after their donation opportunities via B have been exhausted will any match

for an A − ∗ agent via some other donor will be allowed. As this is done according to

their priority order, it does not improve their chances of being matched via some other

donor (apart from B). Hence A−B∗ can drop their preferred donor and does have a strict

incentive to deviate.

Note that in step 6 onwards, all agents apart from O− ∗ get their best option of those

that remain (due to the surplus of O−A∗ and O−B∗ if any), and thus have no incentive

to deviate. Since O − ∗ are effectively undergoing a serial dictator procedure (accounting

for weak preferences) they have no incentive to deviate. Since we have considered every

type of agent, and none have an incentive to deviate, this mechanism is strategyproof.

A.11 Proof of Proposition 10

Proof. First consider the case where there is an AB patient. If the AB patient has a donor

compatible with some other patient, then they must be pointing to someone. Since anyone

can donate to AB patients, then everyone is pointing to AB. Hence there is a two-cycle.

If the AB patient has no donor that can feasibly donate to another patient, then they are

not part of any cycle.

Now consider the case where there is no AB patient. This means that any cycle cannot

utilize AB donors, as AB donors can only donate to AB. Hence assume that there are no

AB donors. Assume there is no two cycle but there is a cycle of length n.

First we will show that there cannot be an O donor as an patient’s top choice, nor an

O patient, for any agent in a cycle. Assume for contradiction that there is an agent i1

that points with an O donor in the cycle. Hence they point to every agent. Since in → i1,

hence i1 ↔ in. Since there are no O donors, and only O donors can donate to O patients,

then there can be no O patients.

We proceed by assuming that there are only A and B donors and patients, and consider

different cases based on the number of agents n in the cycle.

If there are only two agents, and thus all these agents are in the cycle, then this is a

contradiction.
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If there are at least five agents in the cycle, denoted i1 → i2 → i3 → ..., then observe

we can’t have the any three consecutive agents have the same type. For example, if

i1, i2, i3 ∈ IA, then i2 → i1 and thus there is a two cycle, which is a contradiction.

First consider the case where i1, i2 ∈ IA. This implies that i3 ∈ IB. If the cycle is of

length three, then we are done. If i3 → i4 ∈ IA, then i3 → i2, which introduces a two

cycle. Hence i4 ∈ IB. If the cycle is of length four, then we are done. If i4 → i5 ∈ IB, then
i4 → i3 ∈ IB, another contradiction. If i4 → i5 ∈ IA, then i4 → i2 ∈ IA and i2 → i4 ∈ IB
since i2 → i3 ∈ IB. This final contradiction shows that i1, i2 cannot both be in IA. A

similar argument holds for i1, i2 ∈ IB.
Now consider the case where i1 ∈ IA and i2 ∈ IB. If there are only three or four agents,

then we are done (assuming in the latter case there is no three consecutive agents of the

same type). Assume there are at least five agents: i1 → i2 → i3 → i4 → i5. If i3 ∈ IA and

i4 ∈ IB, then i3 → i2, giving a contradiction. By the previous argument on consecutive

types, it cannot be that i3, i4 ∈ IB. If i3, i4 ∈ IA, then i5 ∈ IB, otherwise there will be

three agents of consecutive types. Then i4 → i2 and i2 → i4 gives a two cycle and thus

a contradiction. Now consider i3 ∈ IB and i4 ∈ IA, then i1 → i3 and i3 → i1, another

contradiction. A similar argument applies for i1 ∈ IB and i2 ∈ IA.
If there are exactly three agents, it is clear that the cycles must be of the following

form: A → B → A, or B → A → B. Note that, for example, the latter is equivalent

to A → B → B. However then it must be that there is a two-cycle given by A ↔ B

in both cases, thus this is not possible. If there are four agents, since there can be no

three consective agents, it must be that cycles are either of the form: A → B → A → B,

or A → B → B → A. However neither are possible as there is a two cycle, which is a

contradiction.

A.12 Proofs of Proposition 15

Proof. Let IbK↔K and IbL↔L be the agents in IK and IL, respectively, that are matched by

bK and bL. First note that IK↔K has the same cardinality as IbK↔K as maximal matchings

are maximum matchings (Roth et al., 2005). Note that we can construct f (via choice of

priority order) such that a pair i in IbL↔L not matched in IL↔L is such that they must be

matched to a kidney patient, i.e. i ∈ IK↔L. Worst case, the matched pair of i in IbL↔L
is unmatched in f , but for every such case there is a kidney pair is who is matched in f

but not in the baseline. Hence there must be at least as many transplants in f then in the
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baselines.

Now we show the second condition. We have already shown that more kidney patients

donate kidneys in the previous paragraph. For a similar reason, less liver patients donate

livers. If this did not hold, then the matching in the baseline would not have been maxi-

mum. Finally, since no liver patients donate kidneys in the baseline, the claim that more

liver patients donate kidneys holds trivially.
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